Skip to content

pfnet-research/pfgen-bench

Repository files navigation

Preferred Generation Benchmark

pfgen-benchmark is a benchmark designed to evaluate Japanese text generation specifically for pretrained models. Unlike conventional benchmarks that use templates containing instructions, this benchmark relies solely on providing numerous examples. By conveying expectations such as the question-answering nature of the task, responses of approximately 100 characters, and outputs resembling formal public documents purely through examples, it minimizes the influence of differences in instructions or templates. Additionally, output evaluation is conducted using n-gram-based methods, enabling quick, cost-effective, and deterministic evaluations, unlike the LLM as a Judge approach.

To enable comparisons across as many models as possible, the leaderboard actively includes a wide range of models. These include openly accessible models, models mentioned in academic papers, and those announced by companies through press releases. Contributions of model outputs are encouraged, and results can be submitted via pull requests. For detailed instructions on how to contribute, please refer to the "How to Contribute" section.

See more details: TBD (arxiv)

pfgen-benchmark は事前学習モデル向けに設計された日本語の生成文を評価するベンチマークです。通常のベンチマークでは指示文を含むテンプレートを使いますが、このベンチマークでは多数の例示のみを行います。質問応答タスクであることや、約100字の回答、公用文に近い出力を期待していることを例示のみで伝えることで、指示文やテンプレートの差異による影響を小さくしています。また、出力文の評価は n-gram を用いた方法を用いており、LLM as a Judge の手法と異なり、短時間、低コストでかつ決定的な評価を可能にしています。

詳しくはこちら: Jxiv preprint

できる限り多くのモデルを同じ軸で比較できるように、リーダーボードには積極的に多くのモデル掲載しています。オープンにアクセス可能なモデル、論文で言及されているモデル、企業がプレスリリースを出しているモデルなど、比較の価値があると思われるモデルについては、是非プルリクエストで出力を追加してください。追加方法については「How to contribute」を参照ください。

License of LLM output

The license of the parts of this repository other than the output of LLM is Apache License Version 2.0. The license of the output of LLM depends on the license of each model.

How to evaluate model

You can evaluate the model using run-hf.py (which uses transformers) or run-vllm.py (which uses vLLM). For detailed parameters, refer to --help. The --num-trials parameter, which is the number of patterns for which the model will generate answers, should be decided considering the trade-off between execution time and required accuracy.

# Run a model using Huggingface library or vLLM.
python ./run-hf.py --model=pfnet/plamo-13b --num-trials=5

# Evaluate output and update leaderboard.
make

How to contribute

Follow the instructions in the "How to Evaluate Model" section to run the evaluation. This process will generate config.json and trials.jsonl.xz files under the result directory. Please create a pull request containing only these two files.

To ensure more accurate ranking among models, the number of executions (--num-trials) should be as many as possible, within the limit of 100 trials.

Leaderboard

Rank Score                    Model                                       Length           Fluency Truthfulness Helpfulness
N/A 1.0501 (±0.0000/√1) 👑 system/ground-truth 100.0 (±0.0) 1.155 0.996 1.000
1 0.9303 (±0.0083/√10) 💬 anthropic/claude-3-5-sonnet-20240620 102.2 (±10.4) 0.949 0.959 0.883
2 0.9144 (±0.0037/√2) 💬 deepseek-ai/DeepSeek-V3 87.4 (±14.9) 0.960 0.983 0.800
3 0.8615 (±0.0092/√10) 💬 openai/gpt-4o 84.5 (±18.6) 0.919 0.980 0.686
N/A 0.8494 (±0.0253/√1000) 🎯 system/criteria 100.0 (±3.4) 0.936 0.978 0.505
4 0.8270 (±0.0229/√10) 💬 anthropic/claude-3-opus-20240229 102.3 (±9.5) 0.911 0.944 0.627
5 0.8059 (±0.0169/√5) 💬 google/gemini-2.0-flash-exp 68.0 (±17.7) 0.834 0.984 0.600
6 0.8036 (±0.0133/√10) 💬 openai/gpt-4-turbo 86.5 (±17.4) 0.820 0.959 0.632
7 0.7916 (±0.0146/√10) 💬 openai/gpt-4 107.2 (±11.6) 0.888 0.951 0.536
8 0.7827 (±0.0129/√100) 💬 Qwen/Qwen2.5-72B-Instruct 98.7 (±14.8) 0.871 0.936 0.540
9 0.7789 (±0.0213/√100) 🟢 weblab-GENIAC/Tanuki-8x8B-dpo-v1.0 109.1 (±36.8) 0.890 0.941 0.506
10 0.7782 (±0.0154/√100) 💬 Qwen/Qwen2.5-72B-Instruct 96.5 (±17.8) 0.847 0.939 0.549
11 0.7773 (±0.0168/√100) 💬 pfnet/plamo-1.0-prime 178.2 (±114.5) 0.874 0.942 0.516
12 0.7768 (±0.0113/√5) 💬 mlx-community/Qwen2.5-72B-Instruct-4bit 100.8 (±17.7) 0.860 0.933 0.538
13 0.7766 (±0.0276/√100) 🟢 tokyotech-llm/Swallow-70b-NVE-hf 104.1 (±17.9) 0.884 0.938 0.507
14 0.7756 (±0.0264/√100) 🟢 tokyotech-llm/Swallow-70b-NVE-instruc... 104.1 (±18.5) 0.878 0.938 0.510
15 0.7748 (±0.0000/√1) 💬 openai/chatgpt-o1 76.3 (±17.7) 0.755 0.960 0.610
16 0.7650 (±0.0263/√100) 🟢 tokyotech-llm/Swallow-70b-instruct-hf 102.5 (±14.4) 0.872 0.929 0.494
17 0.7643 (±0.0000/√1) 💬 openai/chatgpt-o1-pro 79.5 (±17.3) 0.748 0.955 0.590
18 0.7628 (±0.0275/√100) 🟢 tokyotech-llm/Swallow-70b-hf 103.5 (±16.1) 0.876 0.930 0.483
19 0.7601 (±0.0289/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-v0.1 106.3 (±21.0) 0.864 0.925 0.492
20 0.7538 (±0.0251/√100) 🟢 turing-motors/Llama-3-heron-brain-70B... 101.1 (±16.9) 0.857 0.925 0.479
21 0.7501 (±0.0237/√100) 💬 weblab-GENIAC/Tanuki-8x8B-dpo-v1.0 181.0 (±87.4) 0.847 0.923 0.480
22 0.7469 (±0.0270/√100) 🟢 pfnet/plamo-100b-base 115.2 (±64.0) 0.861 0.920 0.460
23 0.7444 (±0.0260/√100) 🟢 sbintuitions/sarashina2-70b 120.0 (±49.4) 0.825 0.923 0.485
24 0.7423 (±0.0302/√100) 💬 cyberagent/Llama-3.1-70B-Japanese-Ins... 199.2 (±110.3) 0.817 0.905 0.505
25 0.7392 (±0.0232/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-I... 93.6 (±23.5) 0.847 0.941 0.429
26 0.7370 (±0.0217/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-I... 97.5 (±19.8) 0.846 0.932 0.433
27 0.7365 (±0.0218/√100) 🟢 CohereForAI/c4ai-command-r-plus 107.5 (±42.3) 0.818 0.913 0.478
28 0.7336 (±0.0254/√100) 🟢 tokyotech-llm/Llama-3-Swallow-70B-v0.1 108.2 (±24.7) 0.837 0.908 0.456
29 0.7320 (±0.0201/√10) 💬 anthropic/claude-3-sonnet-20240229 114.3 (±18.9) 0.810 0.910 0.476
30 0.7249 (±0.0247/√100) 💬 cyberagent/calm3-22b-chat 136.8 (±46.7) 0.813 0.907 0.455
31 0.7246 (±0.0250/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-70B-I... 89.8 (±33.9) 0.812 0.940 0.422
32 0.7217 (±0.0219/√100) 🟢 cyberagent/calm3-22b-chat 105.0 (±13.1) 0.824 0.916 0.425
33 0.7194 (±0.0321/√10) 💬 google/text-bison 77.6 (±31.9) 0.790 0.968 0.401
34 0.7185 (±0.0000/√1) 💬 elyza/Llama-3-ELYZA-JP-70B 98.6 (±33.8) 0.837 0.931 0.388
35 0.7175 (±0.0257/√100) 🟢 nvidia/nemotron-4-340b-instruct 107.3 (±28.4) 0.816 0.908 0.429
36 0.7084 (±0.0207/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 95.9 (±19.7) 0.835 0.930 0.360
37 0.7046 (±0.0248/√100) 💬 nvidia/nemotron-4-340b-instruct 94.5 (±39.1) 0.768 0.910 0.435
38 0.7024 (±0.0238/√100) 🟢 rinna/nekomata-14b 104.3 (±18.0) 0.812 0.912 0.383
39 0.7023 (±0.0271/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 112.6 (±33.2) 0.818 0.901 0.388
40 0.7008 (±0.0318/√100) 🟢 tokyotech-llm/Swallow-13b-instruct-hf 104.5 (±13.0) 0.812 0.898 0.392
41 0.7005 (±0.0257/√100) 🟢 leia-llm/Leia-Swallow-13b 105.4 (±19.3) 0.819 0.905 0.378
42 0.6990 (±0.0288/√100) 🟢 tokyotech-llm/Swallow-13b-NVE-hf 106.2 (±19.2) 0.820 0.906 0.371
43 0.6980 (±0.0252/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 98.7 (±50.0) 0.798 0.927 0.369
44 0.6958 (±0.0236/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 92.9 (±20.0) 0.814 0.931 0.343
45 0.6945 (±0.0300/√100) 🟢 sbintuitions/sarashina2-13b 107.8 (±28.3) 0.794 0.900 0.390
46 0.6938 (±0.0217/√100) 🟢 weblab-GENIAC/Tanuki-8B-dpo-v1.0 111.5 (±22.8) 0.800 0.893 0.389
47 0.6924 (±0.0232/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-70B-I... 74.1 (±31.4) 0.755 0.948 0.373
48 0.6891 (±0.0255/√100) 🟢 tokyotech-llm/Swallow-13b-hf 104.8 (±17.7) 0.811 0.901 0.355
49 0.6853 (±0.0201/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 96.6 (±18.8) 0.815 0.919 0.322
50 0.6794 (±0.0243/√100) 🟢 cyberagent/Llama-3.1-70B-Japanese-Ins... 128.8 (±72.2) 0.764 0.883 0.391
51 0.6759 (±0.0232/√10) 🟢 meta-llama/Meta-Llama-3.1-405B 101.2 (±15.1) 0.767 0.892 0.368
52 0.6745 (±0.0152/√10) 💬 google/gemini-1.5-pro-001 52.4 (±15.0) 0.666 0.980 0.377
53 0.6737 (±0.0276/√100) 🟢 sbintuitions/sarashina1-13b 105.4 (±23.4) 0.775 0.882 0.364
54 0.6715 (±0.0284/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-v0.1 107.5 (±22.2) 0.787 0.881 0.347
55 0.6697 (±0.0277/√100) 🟢 nvidia/nemotron-4-340b-base 106.9 (±26.5) 0.768 0.884 0.357
56 0.6677 (±0.0250/√100) 🟢 llm-jp/llm-jp-3-13b 101.1 (±9.7) 0.770 0.884 0.349
57 0.6673 (±0.0225/√100) 🟢 sbintuitions/sarashina1-65b 104.2 (±20.0) 0.776 0.894 0.332
58 0.6663 (±0.0262/√100) 🟢 tokyotech-llm/Swallow-7b-plus-hf 106.1 (±18.1) 0.780 0.880 0.339
59 0.6656 (±0.0169/√10) 💬 google/gemini-1.5-flash-001 55.1 (±21.7) 0.687 0.967 0.342
60 0.6625 (±0.0140/√10) 💬 anthropic/claude-3-haiku-20240307 81.9 (±31.0) 0.747 0.943 0.298
61 0.6590 (±0.0133/√10) 💬 google/gemini-2.0-flash-thinking-exp-... 49.8 (±11.0) 0.639 0.984 0.354
62 0.6572 (±0.0518/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 108.9 (±63.7) 0.764 0.895 0.313
63 0.6473 (±0.0182/√100) 💬 Qwen/Qwen2-72B-Instruct 108.7 (±24.8) 0.703 0.853 0.386
64 0.6456 (±0.0255/√100) 🟢 sbintuitions/sarashina2-7b 105.6 (±22.8) 0.746 0.874 0.316
65 0.6447 (±0.0251/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 74.3 (±31.3) 0.706 0.934 0.294
66 0.6445 (±0.0241/√100) 🟢 tokyotech-llm/Llama-3-Swallow-8B-v0.1 110.3 (±28.4) 0.748 0.867 0.319
67 0.6406 (±0.0139/√100) 💬 Qwen/QwQ-32B-Preview 119.1 (±72.2) 0.730 0.897 0.294
68 0.6399 (±0.1763/√100) 💬 turing-motors/Llama-3-heron-brain-70B... 155.4 (±101.8) 0.718 0.805 0.397
69 0.6392 (±0.0241/√100) 🟢 leia-llm/Leia-Swallow-7b 107.3 (±21.5) 0.754 0.871 0.292
70 0.6368 (±0.0207/√100) 🟢 tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1 105.5 (±21.0) 0.753 0.870 0.287
71 0.6350 (±0.0260/√100) 🟢 karakuri-ai/karakuri-lm-8x7b-instruct... 104.0 (±16.9) 0.755 0.863 0.287
72 0.6337 (±0.0265/√100) 🟢 tokyotech-llm/Swallow-7b-hf 106.5 (±18.7) 0.746 0.866 0.289
73 0.6335 (±0.0252/√100) 🟢 karakuri-ai/karakuri-lm-8x7b-chat-v0.1 103.2 (±16.6) 0.766 0.872 0.263
74 0.6318 (±0.0264/√100) 🟢 tokyotech-llm/Llama-3-Swallow-70B-Ins... 119.2 (±74.3) 0.724 0.861 0.311
75 0.6310 (±0.0127/√100) 💬 Qwen/Qwen2.5-32B-Instruct 75.4 (±19.3) 0.634 0.898 0.360
76 0.6303 (±0.0252/√100) 🟢 cyberagent/calm2-7b-chat-dpo-experime... 110.0 (±24.3) 0.735 0.863 0.293
77 0.6297 (±0.0150/√100) 💬 Qwen/Qwen2.5-32B-Instruct 71.1 (±18.7) 0.634 0.906 0.349
78 0.6291 (±0.0207/√100) 💬 Qwen/QwQ-32B-Preview 229.6 (±135.9) 0.719 0.867 0.301
79 0.6285 (±0.0239/√100) 🟢 pfnet/nekomata-14b-pfn-qfin-inst-merge 124.7 (±47.2) 0.725 0.866 0.295
80 0.6279 (±0.0252/√100) 🟢 tokyotech-llm/Swallow-7b-NVE-hf 108.1 (±24.5) 0.747 0.870 0.267
81 0.6274 (±0.0772/√100) 🟢 rinna/nekomata-14b-instruction 98.3 (±24.2) 0.732 0.855 0.295
82 0.6267 (±0.0263/√100) 🟢 sbintuitions/sarashina1-7b 106.7 (±25.1) 0.737 0.866 0.276
83 0.6252 (±0.0246/√100) 🟢 karakuri-ai/karakuri-lm-70b-v0.1 106.0 (±27.0) 0.713 0.852 0.310
84 0.6214 (±0.0063/√10) 💬 google/gemini-1.0-pro-001 47.4 (±15.2) 0.635 0.976 0.254
85 0.6202 (±0.0251/√100) 🟢 stabilityai/japanese-stablelm-base-be... 107.3 (±19.2) 0.733 0.848 0.280
86 0.6197 (±0.0258/√100) 🟢 stockmark/stockmark-13b 108.9 (±49.3) 0.727 0.860 0.272
87 0.6191 (±0.0284/√100) 🟢 stockmark/stockmark-13b-instruct 108.0 (±46.8) 0.720 0.859 0.278
88 0.6178 (±0.0230/√100) 🟢 karakuri-ai/karakuri-lm-70b-chat-v0.1 104.7 (±27.5) 0.706 0.842 0.306
89 0.6176 (±0.0249/√100) 🟢 tokyotech-llm/Swallow-7b-instruct-hf 106.3 (±17.8) 0.716 0.851 0.285
90 0.6149 (±0.0153/√100) 💬 Qwen/Qwen2.5-14B-Instruct 76.5 (±18.4) 0.644 0.893 0.308
91 0.6136 (±0.0143/√10) 💬 openai/gpt-35-turbo 64.0 (±22.2) 0.658 0.944 0.239
92 0.6095 (±0.0225/√100) 💬 rinna/llama-3-youko-70b-instruct 135.3 (±46.8) 0.683 0.817 0.328
93 0.6091 (±0.0277/√100) 🟢 pfnet/nekomata-14b-pfn-qfin 85.1 (±28.4) 0.672 0.893 0.262
94 0.6087 (±0.1545/√100) 💬 tokyotech-llm/Swallow-70b-NVE-instruc... 135.7 (±74.0) 0.678 0.804 0.344
95 0.6063 (±0.0213/√100) 💬 Qwen/Qwen2.5-14B-Instruct 80.0 (±21.8) 0.639 0.889 0.290
96 0.6060 (±0.0238/√100) 🟢 Qwen/Qwen2-72B 105.5 (±23.5) 0.703 0.836 0.279
97 0.6037 (±0.0239/√100) 🟢 tokyotech-llm/Swallow-7b-NVE-instruct-hf 105.7 (±16.4) 0.719 0.847 0.245
98 0.6030 (±0.0287/√100) 💬 karakuri-ai/karakuri-lm-8x7b-instruct... 197.4 (±72.1) 0.703 0.832 0.274
99 0.6029 (±0.0223/√100) 🟢 Qwen/Qwen2-72B-Instruct 106.0 (±26.7) 0.684 0.825 0.299
100 0.5987 (±0.0264/√100) 🟢 cyberagent/calm2-7b-chat 107.5 (±20.8) 0.701 0.843 0.253
101 0.5971 (±0.0235/√100) 🟢 stockmark/stockmark-100b 107.2 (±24.7) 0.709 0.842 0.240
102 0.5945 (±0.1370/√100) 💬 tokyotech-llm/Swallow-13b-instruct-hf 167.3 (±116.4) 0.670 0.790 0.323
103 0.5921 (±0.0211/√100) 🟢 elyza/Llama-3-ELYZA-JP-8B 115.6 (±44.8) 0.685 0.831 0.260
104 0.5832 (±0.0220/√100) 🟢 augmxnt/shisa-gamma-7b-v1 106.7 (±21.8) 0.706 0.831 0.213
105 0.5825 (±0.0249/√100) 🟢 tokyotech-llm/Swallow-MS-7b-v0.1 106.4 (±25.9) 0.702 0.828 0.218
106 0.5811 (±0.0218/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-ac_00... 103.6 (±15.6) 0.675 0.816 0.252
107 0.5808 (±0.0220/√100) 🟢 stabilityai/japanese-stablelm-base-ga... 106.9 (±17.2) 0.690 0.822 0.230
108 0.5783 (±0.0217/√100) 🟢 microsoft/Phi-3-medium-4k-instruct 105.9 (±20.0) 0.675 0.826 0.234
109 0.5777 (±0.0228/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 105.2 (±14.5) 0.675 0.811 0.247
110 0.5754 (±0.0182/√100) 🟢 Xwin-LM/Xwin-LM-70B-V0.1 105.4 (±26.8) 0.681 0.833 0.213
111 0.5737 (±0.0209/√100) 🟢 microsoft/Phi-3-medium-128k-instruct 107.7 (±24.7) 0.674 0.825 0.223
112 0.5735 (±0.0216/√100) 🟢 google/gemma-2-9b-it 95.9 (±22.0) 0.674 0.837 0.209
113 0.5734 (±0.1980/√100) 💬 tokyotech-llm/Swallow-70b-instruct-hf 130.9 (±105.0) 0.636 0.758 0.326
114 0.5724 (±0.0209/√100) 🟢 rinna/llama-3-youko-70b 104.6 (±20.6) 0.681 0.826 0.210
115 0.5716 (±0.0230/√100) 🟢 sbintuitions/sarashina2.1-1b 116.9 (±41.3) 0.668 0.821 0.226
116 0.5712 (±0.0194/√100) 💬 karakuri-ai/karakuri-lm-8x7b-chat-v0.1 244.4 (±49.3) 0.678 0.816 0.220
117 0.5710 (±0.0226/√100) 🟢 rinna/llama-3-youko-8b-instruct 111.6 (±23.4) 0.672 0.809 0.232
118 0.5659 (±0.0234/√100) 🟢 meta-llama/Meta-Llama-3.1-70B 103.7 (±20.1) 0.665 0.822 0.211
119 0.5656 (±0.0226/√100) 💬 meta-llama/Meta-Llama-3-70B-Instruct 110.2 (±36.4) 0.665 0.777 0.254
120 0.5646 (±0.0240/√100) 💬 microsoft/Phi-3-medium-4k-instruct 131.3 (±50.6) 0.633 0.807 0.253
121 0.5642 (±0.0261/√100) 🟢 stabilityai/japanese-stablelm-instruc... 105.1 (±19.5) 0.646 0.799 0.247
122 0.5620 (±0.0254/√100) 🟢 meta-llama/Meta-Llama-3-70B 102.0 (±17.2) 0.664 0.809 0.213
123 0.5588 (±0.0230/√100) 🟢 stabilityai/japanese-stablelm-instruc... 105.6 (±17.0) 0.673 0.812 0.191
124 0.5574 (±0.0216/√100) 🟢 rinna/nekomata-7b 108.4 (±18.0) 0.678 0.816 0.178
125 0.5569 (±0.0244/√100) 🟢 rinna/llama-3-youko-8b 104.9 (±17.0) 0.670 0.813 0.188
126 0.5568 (±0.0200/√100) 🟢 meta-llama/Meta-Llama-3-70B-Instruct 111.8 (±55.9) 0.655 0.780 0.236
127 0.5562 (±0.0952/√100) 💬 stockmark/stockmark-13b-instruct 137.2 (±89.6) 0.633 0.798 0.238
128 0.5537 (±0.0204/√100) 🟢 tokyotech-llm/Llama-3-Swallow-8B-Inst... 114.4 (±48.5) 0.657 0.812 0.192
129 0.5516 (±0.1016/√100) 💬 cyberagent/calm2-7b-chat-dpo-experime... 181.1 (±120.1) 0.644 0.775 0.236
130 0.5511 (±0.0203/√100) 🟢 google/gemma-2-27b-it 110.3 (±56.8) 0.599 0.836 0.218
131 0.5500 (±0.0605/√100) 💬 tokyotech-llm/Llama-3-Swallow-70B-Ins... 156.5 (±106.5) 0.633 0.780 0.237
132 0.5500 (±0.0467/√100) 💬 tokyotech-llm/Swallow-7b-instruct-hf 121.9 (±77.3) 0.612 0.812 0.225
133 0.5437 (±0.0218/√100) 💬 Xwin-LM/Xwin-LM-70B-V0.1 200.7 (±63.1) 0.652 0.782 0.198
134 0.5436 (±0.0246/√100) 🟢 llm-jp/llm-jp-3-3.7b 101.3 (±10.4) 0.646 0.795 0.189
135 0.5432 (±0.0208/√100) 💬 CohereForAI/c4ai-command-r-plus 48.9 (±16.5) 0.505 0.931 0.194
136 0.5429 (±0.0238/√100) 🟢 meta-llama/Meta-Llama-3.1-70B-Instruct 157.6 (±221.7) 0.636 0.770 0.222
137 0.5387 (±0.0269/√100) 💬 rinna/llama-3-youko-8b-instruct 265.4 (±104.1) 0.635 0.771 0.210
138 0.5386 (±0.0215/√100) 💬 microsoft/Phi-3-medium-128k-instruct 91.9 (±44.7) 0.589 0.834 0.193
139 0.5377 (±0.0481/√100) 💬 meta-llama/Meta-Llama-3.1-70B-Instruct 135.8 (±194.8) 0.617 0.779 0.218
140 0.5349 (±0.0203/√100) 💬 google/gemma-2-27b-it 74.7 (±42.7) 0.545 0.874 0.186
141 0.5347 (±0.0188/√100) 🟢 rinna/youri-7b 107.6 (±16.3) 0.654 0.802 0.148
142 0.5316 (±0.0273/√100) 💬 lightblue/karasu-7B-chat 111.8 (±46.5) 0.621 0.800 0.174
143 0.5301 (±0.0476/√100) 💬 lightblue/karasu-7B-chat-plus 107.1 (±46.7) 0.615 0.798 0.178
144 0.5283 (±0.0585/√100) 💬 lightblue/karasu-7B-chat-plus-unleashed 104.6 (±45.3) 0.614 0.794 0.177
145 0.5179 (±0.0264/√100) 🟢 cyberagent/calm2-7b 106.0 (±26.2) 0.601 0.770 0.182
146 0.5164 (±0.0209/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-jaste... 109.3 (±33.5) 0.606 0.788 0.155
147 0.5143 (±0.0212/√100) 🟢 llm-jp/llm-jp-13b-v2.0 104.1 (±11.2) 0.604 0.760 0.180
148 0.5143 (±0.0170/√100) 🟢 moneyforward/houou-instruction-7b-v3 112.2 (±37.8) 0.629 0.778 0.135
149 0.5122 (±0.0132/√100) 💬 Qwen/Qwen2.5-7B-Instruct 69.5 (±28.7) 0.557 0.847 0.132
150 0.5085 (±0.0160/√100) 🟢 moneyforward/houou-instruction-7b-v1 105.9 (±41.0) 0.617 0.781 0.128
151 0.5080 (±0.0306/√100) 💬 stabilityai/japanese-stablelm-instruc... 111.3 (±58.3) 0.548 0.782 0.195
152 0.5073 (±0.0208/√100) 💬 Qwen/Qwen2-57B-A14B-Instruct 154.8 (±89.5) 0.615 0.734 0.173
153 0.5045 (±0.0208/√100) 🟢 Qwen/Qwen2-57B-A14B 106.7 (±22.5) 0.617 0.757 0.139
154 0.5041 (±0.0225/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 106.2 (±29.3) 0.579 0.778 0.155
155 0.5022 (±0.0221/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-jaste... 95.0 (±36.2) 0.579 0.795 0.132
156 0.5013 (±0.0196/√100) 🟢 google/gemma-2-9b 107.3 (±26.0) 0.595 0.761 0.148
157 0.5013 (±0.0375/√100) 💬 karakuri-ai/karakuri-lm-70b-chat-v0.1 427.4 (±151.5) 0.579 0.723 0.202
158 0.5002 (±0.0218/√100) 🟢 Qwen/Qwen-72B-Chat 223.0 (±258.3) 0.614 0.716 0.171
159 0.4995 (±0.0211/√100) 💬 Qwen/Qwen1.5-72B-Chat 119.3 (±58.1) 0.582 0.708 0.208
160 0.4970 (±0.0117/√100) 💬 Qwen/Qwen2.5-7B-Instruct 65.0 (±22.0) 0.535 0.858 0.098
161 0.4963 (±0.0189/√100) 🟢 Qwen/Qwen1.5-72B-Chat 128.1 (±77.7) 0.586 0.698 0.206
162 0.4959 (±0.0235/√100) 🟢 llm-jp/llm-jp-13b-v1.0 115.0 (±40.9) 0.576 0.756 0.156
163 0.4953 (±0.0203/√100) 🟢 meta-llama/Llama-2-70b-hf 110.4 (±25.8) 0.596 0.745 0.145
164 0.4949 (±0.0177/√100) 💬 moneyforward/houou-instruction-7b-v1 180.5 (±66.6) 0.604 0.734 0.146
165 0.4931 (±0.0247/√100) 🟢 Rakuten/RakutenAI-7B-instruct 105.6 (±33.1) 0.598 0.750 0.132
166 0.4921 (±0.0219/√100) 🟢 Rakuten/RakutenAI-7B-chat 114.9 (±44.7) 0.592 0.760 0.124
167 0.4916 (±0.0201/√100) 🟢 moneyforward/houou-instruction-7b-v2 104.7 (±41.2) 0.588 0.770 0.116
168 0.4895 (±0.0440/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 268.1 (±133.1) 0.548 0.722 0.199
169 0.4872 (±0.0237/√100) 🟢 lightblue/karasu-7B 110.1 (±19.0) 0.586 0.739 0.137
170 0.4870 (±0.0215/√100) 🟢 Qwen/Qwen-72B 134.6 (±114.6) 0.593 0.715 0.152
171 0.4868 (±0.0163/√100) 💬 google/gemma-2-9b-it 47.6 (±14.6) 0.477 0.880 0.104
172 0.4863 (±0.1167/√100) 💬 pfnet/nekomata-14b-pfn-qfin-inst-merge 93.4 (±55.0) 0.544 0.721 0.194
173 0.4862 (±0.0221/√100) 🟢 Qwen/Qwen2-57B-A14B-Instruct 116.9 (±82.5) 0.601 0.734 0.124
174 0.4857 (±0.0168/√100) 💬 moneyforward/houou-instruction-7b-v2 207.0 (±57.3) 0.591 0.719 0.147
175 0.4829 (±0.0211/√100) 🟢 Qwen/Qwen1.5-72B 136.2 (±85.6) 0.591 0.705 0.153
176 0.4827 (±0.0464/√100) 💬 llm-jp/llm-jp-13b-instruct-full-ac_00... 269.1 (±131.5) 0.542 0.716 0.191
177 0.4762 (±0.0810/√100) 💬 stabilityai/japanese-stablelm-instruc... 126.2 (±67.4) 0.545 0.726 0.158
178 0.4746 (±0.0210/√100) 🟢 rinna/youri-7b-chat 102.1 (±16.4) 0.571 0.752 0.100
179 0.4744 (±0.0227/√100) 🟢 pfnet/plamo-13b 108.2 (±28.5) 0.558 0.749 0.116
180 0.4743 (±0.0987/√100) 💬 tokyotech-llm/Swallow-7b-NVE-instruct-hf 129.0 (±72.8) 0.535 0.725 0.163
181 0.4730 (±0.0166/√100) 🟢 Xwin-LM/Xwin-LM-13B-V0.2 109.7 (±27.4) 0.582 0.723 0.114
182 0.4723 (±0.0204/√100) 💬 Rakuten/RakutenAI-7B-chat 233.0 (±133.0) 0.565 0.734 0.118
183 0.4723 (±0.0808/√100) 💬 tokyotech-llm/Llama-3-Swallow-8B-Inst... 199.3 (±155.6) 0.563 0.699 0.154
184 0.4698 (±0.0200/√100) 🟢 Rakuten/RakutenAI-7B 105.4 (±25.6) 0.576 0.721 0.113
185 0.4692 (±0.0161/√100) 🟢 shisa-ai/shisa-v1-qwen2-7b 109.0 (±23.9) 0.563 0.712 0.133
186 0.4661 (±0.0210/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 111.6 (±44.2) 0.536 0.756 0.106
187 0.4659 (±0.0438/√100) 💬 deepseek-ai/deepseek-llm-67b-chat 146.0 (±62.1) 0.555 0.703 0.139
188 0.4659 (±0.0202/√100) 🟢 llm-jp/llm-jp-3-1.8b 105.0 (±16.9) 0.568 0.725 0.105
189 0.4648 (±0.1659/√100) 💬 cyberagent/calm2-7b-chat 124.7 (±95.9) 0.536 0.688 0.171
190 0.4622 (±0.0195/√100) 🟢 Qwen/Qwen-14B-Chat 135.5 (±84.3) 0.572 0.718 0.097
191 0.4619 (±0.0162/√100) 💬 lmsys/vicuna-13b-v1.5-16k 126.5 (±48.4) 0.574 0.715 0.097
192 0.4609 (±0.0113/√10) 🟢 google/gemma-2-2b-jpn-it 69.4 (±24.1) 0.509 0.805 0.069
193 0.4607 (±0.0165/√100) 🟢 SakanaAI/EvoLLM-JP-v1-7B 111.2 (±30.4) 0.579 0.708 0.095
194 0.4601 (±0.0184/√100) 🟢 shisa-ai/shisa-v1-llama3-8b 112.9 (±31.4) 0.557 0.703 0.120
195 0.4597 (±0.0268/√100) 🟢 CohereForAI/c4ai-command-r-v01 179.2 (±166.3) 0.590 0.592 0.197
196 0.4586 (±0.0141/√100) 🟢 google/gemma-2-2b-it 88.2 (±30.8) 0.536 0.761 0.079
197 0.4561 (±0.0202/√100) 🟢 pfnet/plamo-13b-instruct 144.0 (±147.7) 0.532 0.763 0.073
198 0.4559 (±0.0201/√100) 🟢 pfnet/plamo-13b-instruct-nc 156.0 (±183.1) 0.523 0.768 0.077
199 0.4558 (±0.0156/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 75.3 (±26.6) 0.488 0.804 0.076
200 0.4543 (±0.0217/√100) 🟢 rinna/youri-7b-instruction 96.2 (±29.5) 0.530 0.743 0.090
201 0.4535 (±0.0348/√100) 💬 Rakuten/RakutenAI-7B-instruct 128.6 (±83.2) 0.527 0.726 0.108
202 0.4535 (±0.0183/√100) 🟢 THUDM/glm-4-9b 110.3 (±36.9) 0.554 0.689 0.118
203 0.4527 (±0.0146/√100) 🟢 lmsys/vicuna-13b-v1.5-16k 107.9 (±25.9) 0.576 0.708 0.075
204 0.4504 (±0.0224/√100) 🟢 rinna/nekomata-7b-instruction 96.4 (±23.7) 0.528 0.734 0.089
205 0.4486 (±0.0161/√100) 💬 Qwen/Qwen2-7B-Instruct 163.6 (±61.4) 0.547 0.688 0.111
206 0.4484 (±0.0191/√100) 💬 SakanaAI/EvoLLM-JP-v1-7B 123.9 (±68.1) 0.545 0.706 0.094
207 0.4477 (±0.0205/√100) 🟢 rinna/llama-3-youko-70b-instruct 130.7 (±95.3) 0.527 0.670 0.146
208 0.4426 (±0.0204/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-inst... 111.1 (±28.2) 0.544 0.687 0.097
209 0.4409 (±0.1064/√100) 💬 lightblue/karasu-7B 138.1 (±92.9) 0.512 0.679 0.131
210 0.4404 (±0.0146/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 75.9 (±22.7) 0.493 0.773 0.056
211 0.4387 (±0.0655/√100) 💬 Qwen/Qwen-72B-Chat 117.7 (±137.1) 0.541 0.632 0.143
212 0.4385 (±0.0285/√100) 💬 rinna/youri-7b-chat 95.4 (±41.1) 0.500 0.733 0.083
213 0.4377 (±0.0107/√100) 🟢 google/gemma-1.1-7b-it 86.8 (±21.4) 0.509 0.732 0.072
214 0.4374 (±0.0217/√100) 🟢 Qwen/Qwen1.5-32B-Chat 127.0 (±57.0) 0.538 0.642 0.133
215 0.4336 (±0.0168/√100) 🟢 stabilityai/japanese-stablelm-base-be... 107.1 (±17.2) 0.539 0.689 0.073
216 0.4335 (±0.0221/√100) 🟢 Qwen/Qwen-14B 118.1 (±71.6) 0.530 0.675 0.096
217 0.4332 (±0.0164/√100) 🟢 Qwen/Qwen2-7B-Instruct 119.1 (±45.7) 0.531 0.670 0.098
218 0.4330 (±0.0149/√100) 💬 google/gemma-2-2b-it 56.0 (±27.8) 0.445 0.788 0.066
219 0.4320 (±0.0171/√100) 🟢 Qwen/Qwen2-7B 109.1 (±40.1) 0.532 0.671 0.093
220 0.4296 (±0.0322/√100) 💬 Qwen/Qwen-14B-Chat 159.0 (±69.7) 0.522 0.675 0.092
221 0.4295 (±0.0157/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-instruct 111.5 (±31.4) 0.530 0.676 0.083
222 0.4292 (±0.0181/√100) 💬 Xwin-LM/Xwin-LM-13B-V0.2 240.7 (±48.4) 0.533 0.670 0.085
223 0.4282 (±0.0193/√100) 🟢 stabilityai/japanese-stablelm-3b-4e1t... 110.8 (±26.0) 0.518 0.688 0.078
224 0.4272 (±0.0273/√100) 🟢 mistralai/Mistral-Nemo-Instruct-2407 155.8 (±132.8) 0.548 0.611 0.122
225 0.4265 (±0.0115/√100) 💬 google/gemma-1.1-7b-it 78.7 (±28.4) 0.475 0.739 0.066
226 0.4256 (±0.0270/√100) 🟢 rinna/japanese-gpt-neox-3.6b 129.8 (±73.4) 0.485 0.685 0.106
227 0.4228 (±0.0185/√100) 🟢 stabilityai/japanese-stablelm-base-ja... 110.4 (±28.6) 0.528 0.668 0.073
228 0.4222 (±0.0138/√100) 🟢 Xwin-LM/Xwin-LM-7B-V0.2 110.6 (±29.3) 0.520 0.677 0.070
229 0.4220 (±0.0185/√100) 🟢 lmsys/vicuna-7b-v1.5-16k 111.8 (±31.8) 0.522 0.670 0.074
230 0.4207 (±0.0189/√100) 🟢 stabilityai/japanese-stablelm-3b-4e1t... 112.8 (±27.0) 0.507 0.683 0.072
231 0.4201 (±0.0177/√100) 💬 lmsys/vicuna-7b-v1.5-16k 128.1 (±52.5) 0.514 0.668 0.078
232 0.4164 (±0.0244/√100) 🟢 google/gemma-7b 135.5 (±132.3) 0.533 0.631 0.085
233 0.4150 (±0.0212/√100) 💬 Qwen/Qwen1.5-32B-Chat 125.7 (±250.5) 0.496 0.620 0.130
234 0.4149 (±0.0375/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 186.6 (±108.4) 0.469 0.685 0.090
235 0.4144 (±0.0149/√100) 💬 01-ai/Yi-1.5-34B-Chat 170.6 (±47.1) 0.514 0.628 0.101
236 0.4140 (±0.0208/√100) 🟢 meta-llama/Meta-Llama-3-8B-Instruct 116.8 (±44.3) 0.523 0.637 0.082
237 0.4125 (±0.0303/√100) 💬 CohereForAI/c4ai-command-r-v01 137.7 (±324.6) 0.519 0.562 0.157
238 0.4122 (±0.0199/√100) 🟢 rinna/bilingual-gpt-neox-4b 121.0 (±43.6) 0.485 0.660 0.092
239 0.4097 (±0.0187/√100) 🟢 meta-llama/Meta-Llama-3.1-8B 108.7 (±35.4) 0.512 0.650 0.068
240 0.4087 (±0.0201/√100) 🟢 meta-llama/Llama-2-70b-chat-hf 161.3 (±140.8) 0.519 0.608 0.099
241 0.4087 (±0.0146/√100) 🟢 microsoft/Phi-3-small-8k-instruct 109.1 (±24.1) 0.514 0.644 0.068
242 0.4076 (±0.0142/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-fast-... 109.0 (±32.9) 0.503 0.644 0.076
243 0.4074 (±0.0207/√100) 💬 elyza/ELYZA-japanese-Llama-2-13b-inst... 156.6 (±65.9) 0.490 0.646 0.086
244 0.4073 (±0.0175/√100) 🟢 stabilityai/japanese-stablelm-instruc... 110.0 (±26.5) 0.490 0.663 0.070
245 0.4058 (±0.0295/√100) 💬 rinna/youri-7b-instruction 97.0 (±57.0) 0.439 0.713 0.065
246 0.4050 (±0.0191/√100) 🟢 mistralai/Mixtral-8x22B-v0.1 115.6 (±55.4) 0.517 0.615 0.084
247 0.4048 (±0.0175/√100) 🟢 meta-llama/Meta-Llama-3-8B 109.0 (±19.8) 0.505 0.641 0.068
248 0.4045 (±0.0186/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 133.1 (±57.4) 0.475 0.678 0.061
249 0.4042 (±0.0131/√100) 🟢 microsoft/Orca-2-13b 115.5 (±42.6) 0.510 0.630 0.073
250 0.4041 (±0.0218/√100) 💬 meta-llama/Meta-Llama-3-8B-Instruct 131.4 (±88.3) 0.508 0.614 0.090
251 0.4035 (±0.0151/√100) 🟢 SakanaAI/EvoLLM-JP-A-v1-7B 110.4 (±31.3) 0.508 0.633 0.069
252 0.4033 (±0.0164/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-fast... 107.2 (±28.5) 0.495 0.643 0.072
253 0.4032 (±0.0237/√100) 🟢 Qwen/Qwen1.5-32B 150.3 (±104.8) 0.505 0.605 0.100
254 0.4024 (±0.0187/√100) 🟢 01-ai/Yi-1.5-34B 109.9 (±28.2) 0.493 0.631 0.083
255 0.4011 (±0.0236/√100) 🟢 cyberagent/open-calm-7b 143.8 (±97.0) 0.472 0.641 0.091
256 0.4006 (±0.0166/√100) 💬 microsoft/Phi-3-small-8k-instruct 189.7 (±84.1) 0.500 0.630 0.073
257 0.4001 (±0.0199/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 117.6 (±48.9) 0.464 0.684 0.052
258 0.3985 (±0.0161/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b 138.4 (±51.8) 0.493 0.634 0.069
259 0.3960 (±0.0199/√100) 🟢 line-corporation/japanese-large-lm-1.7b 179.2 (±174.5) 0.474 0.650 0.065
260 0.3949 (±0.0193/√100) 💬 meta-llama/Meta-Llama-3.1-8B-Instruct 216.6 (±345.2) 0.487 0.624 0.074
261 0.3948 (±0.0190/√100) 💬 Qwen/Qwen1.5-14B-Chat 127.9 (±50.6) 0.500 0.604 0.080
262 0.3946 (±0.0201/√100) 🟢 Qwen/Qwen1.5-14B 130.9 (±67.8) 0.509 0.609 0.066
263 0.3934 (±0.0201/√100) 🟢 stabilityai/japanese-stablelm-instruc... 107.8 (±38.0) 0.466 0.648 0.066
264 0.3914 (±0.0172/√100) 🟢 mistralai/Mixtral-8x7B-Instruct-v0.1 95.1 (±25.2) 0.488 0.636 0.050
265 0.3863 (±0.0160/√100) 🟢 Qwen/Qwen1.5-14B-Chat 131.4 (±55.8) 0.491 0.593 0.075
266 0.3837 (±0.0188/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 117.4 (±42.4) 0.462 0.649 0.041
267 0.3823 (±0.0645/√100) 💬 mistralai/Mistral-Nemo-Instruct-2407 157.9 (±140.3) 0.484 0.563 0.100
268 0.3822 (±0.0647/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 97.6 (±76.2) 0.397 0.664 0.086
269 0.3819 (±0.0265/√100) 🟢 google/gemma-2-27b 214.2 (±183.3) 0.450 0.608 0.087
270 0.3804 (±0.0161/√100) 🟢 Qwen/Qwen-7B-Chat 140.8 (±65.1) 0.485 0.612 0.045
271 0.3803 (±0.0249/√100) 💬 elyza/ELYZA-japanese-Llama-2-7b-instruct 136.4 (±70.7) 0.452 0.619 0.070
272 0.3772 (±0.0162/√100) 💬 microsoft/Phi-3-small-128k-instruct 199.7 (±111.9) 0.473 0.590 0.069
273 0.3760 (±0.0236/√100) 🟢 cyberagent/open-calm-3b 123.2 (±79.0) 0.442 0.624 0.062
274 0.3759 (±0.0149/√100) 🟢 lmsys/longchat-7b-v1.5-32k 116.9 (±31.6) 0.474 0.609 0.045
275 0.3740 (±0.0164/√100) 🟢 meta-llama/Llama-2-13b-hf 108.5 (±21.8) 0.474 0.603 0.045
276 0.3737 (±0.0197/√100) 🟢 meta-llama/Meta-Llama-3.1-8B-Instruct 204.5 (±303.4) 0.478 0.589 0.055
277 0.3720 (±0.0622/√100) 💬 Xwin-LM/Xwin-LM-7B-V0.2 205.3 (±79.1) 0.466 0.590 0.060
278 0.3720 (±0.0157/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-fast 177.5 (±147.2) 0.458 0.598 0.061
279 0.3699 (±0.0345/√100) 💬 Qwen/Qwen-7B-Chat 182.9 (±110.3) 0.468 0.600 0.042
280 0.3694 (±0.0103/√100) 🟢 google/gemma-7b-it 89.7 (±21.6) 0.446 0.640 0.022
281 0.3685 (±0.0173/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b 140.0 (±52.8) 0.462 0.596 0.047
282 0.3673 (±0.0089/√100) 💬 google/gemma-7b-it 110.0 (±47.6) 0.448 0.633 0.020
283 0.3655 (±0.0116/√100) 🟢 deepseek-ai/deepseek-llm-7b-chat 113.9 (±24.7) 0.474 0.579 0.043
284 0.3642 (±0.0165/√100) 🟢 llm-jp/llm-jp-1.3b-v1.0 134.0 (±62.6) 0.437 0.612 0.044
285 0.3637 (±0.0223/√100) 🟢 cyberagent/open-calm-large 122.3 (±73.9) 0.424 0.611 0.056
286 0.3637 (±0.0152/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-fast 168.0 (±77.4) 0.452 0.587 0.052
287 0.3632 (±0.0237/√100) 💬 elyza/ELYZA-japanese-Llama-2-7b-fast-... 178.6 (±113.6) 0.443 0.582 0.064
288 0.3628 (±0.0145/√100) 🟢 Qwen/Qwen-7B 117.3 (±39.0) 0.468 0.582 0.039
289 0.3554 (±0.0178/√100) 🟢 meta-llama/Llama-2-7b-chat-hf 139.3 (±93.1) 0.464 0.570 0.031
290 0.3545 (±0.0445/√100) 💬 llm-jp/llm-jp-13b-instruct-full-jaste... 48.8 (±50.1) 0.283 0.723 0.058
291 0.3543 (±0.0439/√100) 💬 lmsys/longchat-7b-v1.5-32k 160.1 (±73.5) 0.448 0.572 0.043
292 0.3538 (±0.0175/√100) 🟢 01-ai/Yi-1.5-9B 113.0 (±29.4) 0.457 0.555 0.050
293 0.3531 (±0.0159/√100) 🟢 mistralai/Mixtral-8x7B-v0.1 94.3 (±20.8) 0.450 0.573 0.037
294 0.3514 (±0.0102/√100) 🟢 google/gemma-1.1-2b-it 80.4 (±21.6) 0.404 0.625 0.025
295 0.3495 (±0.0268/√100) 🟢 cyberagent/open-calm-1b 141.3 (±110.0) 0.412 0.578 0.059
296 0.3471 (±0.0131/√100) 🟢 microsoft/Orca-2-7b 131.1 (±70.7) 0.447 0.555 0.039
297 0.3465 (±0.0202/√100) 💬 deepseek-ai/deepseek-llm-7b-chat 167.2 (±76.5) 0.435 0.562 0.042
298 0.3463 (±0.0178/√100) 💬 mistralai/Mixtral-8x7B-Instruct-v0.1 147.1 (±111.8) 0.448 0.548 0.043
299 0.3449 (±0.0986/√100) 💬 stabilityai/japanese-stablelm-instruc... 109.4 (±66.2) 0.397 0.585 0.053
300 0.3440 (±0.0978/√100) 💬 stabilityai/japanese-stablelm-3b-4e1t... 127.8 (±80.5) 0.401 0.576 0.055
301 0.3436 (±0.0126/√100) 💬 01-ai/Yi-1.5-9B-Chat 143.6 (±60.1) 0.438 0.540 0.053
302 0.3428 (±0.0163/√100) 🟢 meta-llama/Llama-2-7b-hf 112.3 (±28.0) 0.440 0.550 0.038
303 0.3408 (±0.0225/√100) 🟢 anthracite-org/magnum-32b-v2 191.9 (±223.2) 0.442 0.507 0.073
304 0.3393 (±0.0225/√100) 🟢 stockmark/gpt-neox-japanese-1.4b 92.2 (±63.7) 0.351 0.641 0.025
305 0.3322 (±0.0151/√100) 🟢 Qwen/Qwen1.5-7B-Chat 127.7 (±117.0) 0.431 0.520 0.045
306 0.3315 (±0.0203/√100) 🟢 Qwen/Qwen1.5-7B 141.8 (±126.5) 0.445 0.504 0.046
307 0.3313 (±0.0115/√100) 🟢 google/gemma-2b-it 85.9 (±24.7) 0.393 0.577 0.024
308 0.3293 (±0.0252/√100) 💬 Qwen/Qwen1.5-7B-Chat 195.7 (±113.1) 0.429 0.503 0.056
309 0.3276 (±0.0709/√100) 💬 elyza/ELYZA-japanese-Llama-2-13b-fast... 134.0 (±98.8) 0.395 0.543 0.045
310 0.3272 (±0.0101/√100) 💬 01-ai/Yi-1.5-6B-Chat 194.4 (±75.0) 0.426 0.530 0.025
311 0.3187 (±0.0142/√100) 🟢 Qwen/Qwen2-1.5B-Instruct 131.4 (±46.7) 0.421 0.513 0.022
312 0.3172 (±0.0150/√100) 🟢 Qwen/Qwen2-1.5B 120.9 (±30.7) 0.422 0.511 0.019
313 0.3161 (±0.0119/√100) 🟢 deepseek-ai/deepseek-llm-7b-base 113.7 (±21.6) 0.424 0.501 0.024
314 0.3147 (±0.0175/√100) 💬 Qwen/Qwen2-1.5B-Instruct 180.7 (±101.0) 0.408 0.511 0.025
315 0.3078 (±0.0195/√100) 🟢 cyberagent/open-calm-medium 117.3 (±59.4) 0.363 0.537 0.024
316 0.3058 (±0.1106/√100) 💬 rinna/nekomata-7b-instruction 61.2 (±57.0) 0.307 0.567 0.043
317 0.3053 (±0.0177/√100) 🟢 google/gemma-2b 151.5 (±113.6) 0.410 0.480 0.026
318 0.3050 (±0.0190/√100) 🟢 Qwen/Qwen1.5-MoE-A2.7B 146.4 (±90.3) 0.412 0.468 0.035
319 0.2993 (±0.0095/√100) 🟢 01-ai/Yi-1.5-6B-Chat 133.3 (±46.2) 0.394 0.481 0.022
320 0.2993 (±0.0107/√100) 🟢 tiiuae/falcon-11B 121.6 (±31.5) 0.398 0.483 0.016
321 0.2957 (±0.0641/√100) 💬 meta-llama/Llama-2-13b-chat-hf 305.2 (±299.7) 0.402 0.453 0.032
322 0.2953 (±0.0442/√100) 🟢 augmxnt/shisa-base-7b-v1 200.4 (±160.3) 0.378 0.478 0.030
323 0.2924 (±0.0506/√100) 💬 Qwen/Qwen1.5-MoE-A2.7B-Chat 245.1 (±209.1) 0.381 0.453 0.043
324 0.2914 (±0.0133/√100) 🟢 mistralai/Mistral-7B-v0.1 117.4 (±40.4) 0.402 0.454 0.018
325 0.2907 (±0.0175/√100) 🟢 Qwen/Qwen1.5-MoE-A2.7B-Chat 149.8 (±91.0) 0.388 0.448 0.036
326 0.2853 (±0.0163/√100) 🟢 Qwen/Qwen1.5-4B-Chat 127.8 (±71.2) 0.395 0.441 0.019
327 0.2809 (±0.0133/√100) 🟢 Qwen/Qwen1.5-1.8B-Chat 178.3 (±92.0) 0.381 0.445 0.017
328 0.2770 (±0.0131/√100) 🟢 mistralai/Mistral-7B-Instruct-v0.2 146.2 (±70.1) 0.387 0.419 0.024
329 0.2769 (±0.0324/√100) 💬 llm-jp/llm-jp-13b-instruct-full-jaste... 16.9 (±24.6) 0.125 0.693 0.013
330 0.2769 (±0.1029/√100) 💬 stabilityai/japanese-stablelm-instruc... 117.0 (±115.0) 0.307 0.489 0.035
331 0.2666 (±0.0241/√100) 🟢 deepseek-ai/deepseek-llm-67b-chat 140.2 (±83.0) 0.351 0.440 0.009
332 0.2661 (±0.0128/√100) 🟢 Qwen/Qwen1.5-1.8B 129.7 (±65.7) 0.360 0.424 0.014
333 0.2613 (±0.0136/√100) 🟢 Qwen/Qwen2-0.5B-Instruct 176.8 (±98.9) 0.351 0.426 0.007
334 0.2604 (±0.0148/√100) 🟢 mistralai/Mistral-7B-Instruct-v0.1 139.8 (±101.3) 0.367 0.400 0.014
335 0.2598 (±0.0129/√100) 🟢 Qwen/Qwen2-0.5B 122.7 (±43.5) 0.350 0.420 0.009
336 0.2581 (±0.0196/√100) 🟢 cyberagent/open-calm-small 119.1 (±54.1) 0.310 0.460 0.004
337 0.2555 (±0.0163/√100) 🟢 Qwen/Qwen1.5-4B 149.2 (±76.6) 0.363 0.388 0.015
338 0.2543 (±0.0266/√100) 🟢 mosaicml/mpt-30b-chat 121.3 (±46.4) 0.327 0.428 0.008
339 0.2414 (±0.0281/√100) 💬 Qwen/Qwen1.5-1.8B-Chat 480.0 (±210.3) 0.329 0.392 0.003
340 0.2394 (±0.0745/√100) 💬 Qwen/Qwen1.5-4B-Chat 105.3 (±104.1) 0.307 0.390 0.021
341 0.2317 (±0.0455/√100) 💬 mistralai/Mistral-7B-Instruct-v0.1 202.3 (±153.9) 0.320 0.362 0.012
342 0.2231 (±0.0166/√100) 💬 mistralai/Mistral-7B-Instruct-v0.2 261.2 (±166.3) 0.316 0.334 0.019
343 0.2182 (±0.0152/√100) 🟢 microsoft/phi-1 47.6 (±34.3) 0.234 0.420 0.000
344 0.2177 (±0.0110/√100) 🟢 Qwen/Qwen1.5-0.5B-Chat 143.4 (±52.1) 0.317 0.327 0.009
345 0.2169 (±0.0561/√100) 💬 Qwen/Qwen2-0.5B-Instruct 129.5 (±114.3) 0.265 0.379 0.006
346 0.2169 (±0.0218/√100) 🟢 mosaicml/mpt-30b-instruct 109.8 (±36.1) 0.274 0.370 0.008
347 0.2146 (±0.0151/√100) 🟢 microsoft/phi-2 78.0 (±31.4) 0.287 0.356 0.001
348 0.2061 (±0.0820/√100) 💬 meta-llama/Llama-2-70b-chat-hf 523.3 (±444.5) 0.271 0.303 0.045
349 0.2040 (±0.0152/√100) 🟢 Qwen/Qwen1.5-0.5B 138.6 (±55.9) 0.296 0.314 0.003
350 0.2038 (±0.0538/√100) 🟢 mosaicml/mpt-30b 236.5 (±433.3) 0.271 0.334 0.007
351 0.1885 (±0.0194/√100) 🟢 microsoft/phi-1_5 77.5 (±33.6) 0.258 0.306 0.001
352 0.1833 (±0.0406/√100) 💬 google/gemma-1.1-2b-it 32.6 (±26.7) 0.171 0.376 0.003
353 0.1765 (±0.0439/√100) 💬 Qwen/Qwen1.5-0.5B-Chat 214.3 (±172.6) 0.251 0.276 0.002
354 0.1687 (±0.0172/√100) 🟢 upstage/SOLAR-10.7B-v1.0 171.0 (±87.1) 0.265 0.237 0.004
355 0.1544 (±0.0132/√100) 🟢 01-ai/Yi-1.5-34B-Chat 730.0 (±533.6) 0.201 0.256 0.006
356 0.1475 (±0.0826/√100) 💬 mosaicml/mpt-30b-chat 112.2 (±112.4) 0.182 0.254 0.007
357 0.1241 (±0.0558/√100) 💬 google/gemma-2b-it 24.1 (±24.6) 0.115 0.257 0.000
358 0.1226 (±0.0240/√100) 🟢 Deci/DeciLM-7B 174.0 (±165.5) 0.190 0.174 0.003
359 0.1160 (±0.0081/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 212.1 (±148.9) 0.153 0.195 0.000
360 0.1009 (±0.0846/√100) 💬 meta-llama/Llama-2-7b-chat-hf 241.5 (±336.2) 0.136 0.158 0.009
361 0.1004 (±0.0094/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 123.1 (±128.8) 0.119 0.182 0.000
362 0.0987 (±0.0145/√100) 🟢 deepseek-ai/deepseek-llm-67b-base 154.2 (±77.3) 0.174 0.121 0.000
363 0.0982 (±0.1596/√100) 💬 rinna/nekomata-14b-instruction 16.0 (±38.1) 0.115 0.141 0.039
364 0.0955 (±0.0102/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 129.5 (±141.0) 0.116 0.170 0.000
365 0.0939 (±0.0064/√100) 🟢 sbintuitions/tiny-lm-chat 250.2 (±275.6) 0.133 0.149 0.000
366 0.0936 (±0.0082/√100) 💬 sbintuitions/tiny-lm-chat 276.7 (±209.6) 0.135 0.145 0.000
367 0.0921 (±0.0058/√100) 🟢 sbintuitions/tiny-lm 471.9 (±199.0) 0.135 0.142 0.000
368 0.0880 (±0.0334/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 134.0 (±144.7) 0.105 0.159 0.000
369 0.0762 (±0.0033/√100) 🟢 line-corporation/japanese-large-lm-3.6b 1066.6 (±31.6) 0.125 0.103 0.000
370 0.0760 (±0.0032/√100) 🟢 line-corporation/japanese-large-lm-3.... 1066.4 (±31.8) 0.125 0.103 0.000
371 0.0758 (±0.0034/√100) 💬 line-corporation/japanese-large-lm-3.... 1067.2 (±31.8) 0.125 0.102 0.000
372 0.0673 (±0.0085/√100) 🟢 moneyforward/houou-instruction-7b-v3 143.2 (±112.2) 0.098 0.104 0.000
373 0.0625 (±0.0169/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-ac_00... 31.6 (±10.3) 0.088 0.099 0.000
374 0.0429 (±0.0440/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 31.7 (±54.7) 0.045 0.084 0.000
375 0.0406 (±0.0028/√100) 🟢 microsoft/Phi-3-small-128k-instruct 268.1 (±123.4) 0.083 0.039 0.000
376 0.0337 (±0.0026/√100) 🟢 augmxnt/shisa-7b-v1 590.7 (±238.2) 0.076 0.025 0.000
377 0.0284 (±0.0012/√100) 🟢 lightblue/karasu-7B-chat-plus 285.1 (±53.8) 0.080 0.005 0.000
378 0.0225 (±0.0702/√100) 💬 SakanaAI/EvoLLM-JP-A-v1-7B 5.9 (±27.6) 0.026 0.037 0.005
379 0.0180 (±0.0039/√100) 🟢 mistralai/Mistral-Nemo-Base-2407 607.5 (±344.5) 0.039 0.015 0.000
380 0.0047 (±0.0024/√100) 🟢 ai-forever/mGPT-13B 321.1 (±266.7) 0.008 0.006 0.000
381 0.0022 (±0.0006/√100) 🟢 lightblue/qarasu-14B-chat-plus-unleashed 937.5 (±557.0) 0.004 0.002 0.000
382 0.0019 (±0.0002/√100) 🟢 01-ai/Yi-1.5-9B-Chat 1440.0 (±51.9) 0.005 0.001 0.000
383 0.0018 (±0.0004/√100) 🟢 CohereForAI/aya-23-8B 1676.6 (±351.0) 0.004 0.002 0.000
384 0.0006 (±0.0002/√100) 🟢 meta-llama/Llama-2-13b-chat-hf 1523.9 (±43.5) 0.001 0.001 0.000
385 0.0000 (±0.0000/√100) 🟢 01-ai/Yi-1.5-6B 0.0 (±0.0) 0.000 0.000 0.000
386 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-1.1B 0.0 (±0.0) 0.000 0.000 0.000
387 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-7B-chat-plus-unleashed 0.0 (±0.0) 0.000 0.000 0.000
388 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-7B-chat 0.0 (±0.0) 0.000 0.000 0.000
389 0.0000 (±0.0000/√100) 🟢 lightblue/suzume-llama-3-8B-japanese 300.0 (±0.0) 0.000 0.000 0.000
390 0.0000 (±0.0000/√100) 🟢 lightblue/suzume-llama-3-8B-multilingual 300.0 (±0.0) 0.000 0.000 0.000

Citation

If you use this repository, please cite the following paper:

@preprint{Imos2024-pre-pfgen,
  title={{pfgen-bench: 日本語事前学習モデルのための文章生成性能評価ベンチマーク}},
  author={今城, 健太郎 and 平野, 正徳 and 鈴木, 脩司 and 三上, 裕明},
  doi={10.51094/jxiv.1008},
  year={2024}
}

Or cite directory this repository:

@misc{imajo2024-pfgen
    title={{Preferred Generation Benchmark}},
    author={Kentaro Imajo and Masanori Hirano and Shuji Suzuki and Hiroaki Mikami},
    year={2024},
    url = {https://github.com/pfnet-research/pfgen-bench}
}

About

Preferred Generation Benchmark

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published