-
Notifications
You must be signed in to change notification settings - Fork 106
SimilarityFunctions
fozziethebeat edited this page Oct 21, 2011
·
2 revisions
We provide two mechanisms for computing the similarity between two semantic vectors:
- Static methods in the [Similarity class] (http://fozziethebeat.github.com/S-Space/apidocs/edu/ucla/sspace/common/Similarity.html)
- Standalone implementations of the [SimilarityFunction] (http://fozziethebeat.github.com/S-Space/apidocs/edu/ucla/sspace/sim/SimilarityFunction.java)
Both methods return the same value for each similarity type.
We provide both static and standalone implementations of the following metrics:
- [Cosine similarity] (http://en.wikipedia.org/wiki/Cosine_similarity)
- [Pearson product-moment correlation coefficient] (http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient )
- [Euclidean distance/similarity] (http://en.wikipedia.org/wiki/Euclidean_distance)
- [Spearman rank correlation coefficient] (http://en.wikipedia.org/wiki/Spearman_rank_correlation)
- [K-L Divergence] (http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)
- [Jaccard Index] (http://en.wikipedia.org/wiki/Jaccard_index)