Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[lower_to_mlir] Use named_attrs while lowering tt-forge ops to mlir #41

Merged
merged 1 commit into from
Aug 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 28 additions & 10 deletions pybuda/csrc/passes/lower_to_mlir.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ using namespace tt;
/**
* @brief Implementation of TT-MLIR emission from the TTForge graph.
*/

class MLIRGenerator
{
public:
Expand Down Expand Up @@ -109,6 +110,25 @@ class MLIRGenerator
symbolTable_[node->name()] = {value, node};
}

// Convert a TTForge attribute to an MLIR attribute.
mlir::Attribute convert_to_mlir_attribute(const tt::BudaOpAttr& value) {
return std::visit([this](auto&& arg) -> mlir::Attribute {
using T = std::decay_t<decltype(arg)>;
if constexpr (std::is_same_v<T, std::string>) {
return builder_.getStringAttr(arg);
} else if constexpr (std::is_same_v<T, bool>) {
return builder_.getBoolAttr(arg);
} else if constexpr (std::is_same_v<T, int>) {
return builder_.getI32IntegerAttr(arg);
} else if constexpr (std::is_same_v<T, float>) {
return builder_.getF32FloatAttr(arg);
} else {
// If type not handled, throw an exception or handle it appropriately
throw std::runtime_error("Unhandled attribute type");
}
}, value);
}

/// Emit a new function in MLIR.
/// A function represents a set of TTForge operations that are executed to produce output results.
/// This function will generate the MLIR code for each TTForge operation in the graph and emit the return operation for the function.
Expand Down Expand Up @@ -204,15 +224,15 @@ class MLIRGenerator
::llvm::ArrayRef<::llvm::StringRef> operation_attributes = TTIROp::getAttributeNames();
for(auto attribute_name: operation_attributes)
{
if(attribute_name.equals("operand_constraints"))
if(attribute_name == "operand_constraints")
{
// Create operation constraint attributes
mlir::NamedAttribute operand_constraints_attribute = builder_.getNamedAttr(
"operand_constraints",
builder_.getArrayAttr(get_mlir_operand_constraint_attributes(graph, op_node)));
attributes.push_back(operand_constraints_attribute);
}
else if(attribute_name.equals(mlir::OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr()))
else if(attribute_name == mlir::OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr())
{
// Create operation segment sizes attributes
mlir::NamedAttribute operand_segment_sizes_attribute = builder_.getNamedAttr(
Expand All @@ -225,15 +245,13 @@ class MLIRGenerator
}
}

// Workaround for now, need to figure out how to handle this properly
if(op_node->op_name() == "softmax")
for(const auto & attribute: op_node->op_type().named_attrs)
{
log_info("Softmax");
int32_t dimension = std::get<int>(op_node->op_attrs()[0]);
mlir::NamedAttribute dimension_attribute = builder_.getNamedAttr(
"dimension",
builder_.getSI32IntegerAttr(dimension));
attributes.push_back(dimension_attribute);
// convert atribute to mlir atribute
auto mlir_atribute = convert_to_mlir_attribute(attribute.second);
mlir::NamedAttribute named_attribute = builder_.getNamedAttr(
attribute.first, mlir_atribute);
attributes.push_back(named_attribute);
}

auto op = builder_.create<TTIROp>(
Expand Down
4 changes: 2 additions & 2 deletions pybuda/pybuda/op/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def Softmax(
Tensor
Buda tensor
"""
return op("softmax", name, operandA, attrs=(dim, stable)).get_tensor()
return op("softmax", name, operandA, attrs=(dim, stable), dimension=dim).get_tensor()


def LogSoftmax(
Expand Down Expand Up @@ -82,7 +82,7 @@ def LogSoftmax(
Tensor
Buda tensor
"""
return op("log_softmax", name, operandA, attrs=(dim, stable)).get_tensor()
return op("log_softmax", name, operandA, attrs=(dim, stable), dimension=dim).get_tensor()

def Layernorm(
name: str,
Expand Down
Loading