Skip to content
@pni-data

RDM - Predictive Neuroscience Lab

A collection of DataLad github siblings

Research Data Repositories

A collection of GitHub siblings of DataLad datasets. Some of the included datasets require access credentials.

Quick Contents

Browse all datasets


Quickstart Guide


Requirements for all datasets in the lab's RDM system

  • dataset must be a DataLad dataset
  • dataset must be in BIDS format (for derivative and non-imaging data: at least a dataset_description.json file must be there)
  • datasets must have a GitHub sibling in this GH organization
  • datasets must have a reliable special remote (preferred: Coscine RDS-S3 or Amazon S3 for public datasets (e.g. clones of openneuro datasets)
  • datasets must have an unannexed readme.md and dataset_description.json
  • GitHub repo description must be set to a short description of the dataset, ending with the sample size when possible (n=xy)

⬇️ I would like to clone a dataset

1. Install it with datalad based on the github handle

This does not download the actual data, only the "skeleton". After the install command, you have to explictly tell datalad that you would like your github sibling (origin) to depend on the S3-sibling.

datalad install -s [email protected]:pni-data/<dataset_name>.git <dataset_name>
datalad siblings configure -s origin --publish-depends coscine-rds-s3

If the dataset you are about to donwload is in a private github repo, you'll need to authenticate, as usual (e.g. with a Personal Access Token or a key).

1.a Set up Proxy (optional)

If your connection goes trough a proxy server, you'll need to allow its IP, to be able to communicatee with the S3 sibling.

git config --add annex.security.allowed-ip-addresses <proxy-server-ip>

2. Change to the dataset directory and download the file(s) you want

You can selectively download what you need (e.g. derivatives only).

cd <dataset_name>
datalad get <path/to/file*>

Depending on the dataset, you will be prompted for the S3 credentials to access the files. In this case, contact the dataset owner to obtain the (read or write) credentials and set them uplikee this:

export AWS_ACCESS_KEY_ID="XXXXX-XXXX-XXXX-XXXX-XXXX"
export AWS_SECRET_ACCESS_KEY="XXXXXXXX"

Now you should be able to get the data.

3. Check the locations a file is stored at

git-annex whereis <path/to/file>

4. Free up space, without deleting the dataset

As all datasets here are guaranteed to be also stored on an s3 remote, you can always safely drop any file from your local dataset. Datalad only drops the actual data, but not the annexed links. That is the "dataset skeleton" never has to be removed. You will still able to browse and search the dataset skeleton (and the metadata) and download a file again, if you need it.

datalad drop <path/to/file*>

⬆️ I want to upload my changes

Just save your changes and push/publish it to the ggithub sibling. As the github sibling depends on the coscine-rds-s3 special remote, the following command will upload the actual data to thee s3 storage.

datalad save .
datalad push --to origin

🆕 I want to add a new dataset

1. Turn your folder a DataLad dataset

cd <my_dataset>
datalad create -f .
datalad save .

2. Unannex small, public meta-data files

E.g. readme.md and dataset_description.json (this way these will be directly visible in github)

datalad no-annex --pattern readme.md
datalad save .

Create Special Remote sibling

Here we create a Coscine RDS-S3 sibling.

You will need the following info about the S3 resource:

  • Host name (e.g. coscine-s3-01.data.fds.uni-due.de)
  • Port (e.g. 443)
  • Access Key for Writing
  • Secret Key for Writing
  • Bucket Name

See the DataLad docs for more detail.

export AWS_ACCESS_KEY_ID="your-access-key-for-writing"
export AWS_SECRET_ACCESS_KEY="your-secret-key-for-writing"
git-annex initremote coscine-rds-s3 type=S3 host=<your_host> port=<your_port> encryption=none bucket=<your_bucket_name> signature=v4 chunk=50mb autoenable=true

Create a github sibling

This is for RDM-purposes (listing, sharing, using issues, PRs, etc). The github repo will only contain data that is unannexed. It will disclose the directory tree and the filenames, though. If that's not what you want, make the repo private with --private. See the DataLad docs for details.

Requirements:

  • you must be a member of the GitHub organization "pni-data" (or swap it your own profile or organization)
  • you need a valid GitHub Personal Access Token
  • the gitHub repo must not yet exist (the command creates it)
datalad create-sibling-github -d . --github-organization -s origin pni-data <dataset_name> --publish-depends coscine-rds-s3 --access-protocol ssh
# here, your github token is needed
Check if you have both siblings ready
datalad siblings

.: here(+) [git]
.: coscine-rds-s3(+) [git]
.: github(-) [[email protected]:pni-data/datalad_test2.git (git)]

Ready! Now you just need to push your data.

We push/publish the unannexed data and the annexed "dataset skeleton" to github. As the github sibling (origin) depends on the coscine-rds-s3 special remote, the following command will upload the actual data to thee s3 storage (in machine-readable chunks and, if requested, in an encrypted format).

datalad push --to origin

Pinned Loading

  1. TRR289_A06 TRR289_A06 Public

    Project A06 - PI: Stefanie Brassen (Universität Hamburg)

    1

  2. TRR289_A04_NOVIS TRR289_A04_NOVIS Public

    Project A04 - PI: Sigrid Elsenbruch (Universität Duisburg-Essen)

    1

  3. TRR289_A03_EEGA3 TRR289_A03_EEGA3 Public

    Project A03 - PI: Michael Rose (Universität Hamburg)

  4. TRR289_A02 TRR289_A02 Public

    Project A02 - PI: Christian Büchel (Universität Hamburg)

  5. TRR289_A01_COLA TRR289_A01_COLA Public

    Project A01 - PI: Ulrike Bingel (Universität Duisburg-Essen)

  6. TRR289_MEGA TRR289_MEGA Public

    TRR289 Mega-dataset

Repositories

Showing 10 of 28 repositories
  • TRR289_A04_NOVIS Public

    Project A04 - PI: Sigrid Elsenbruch (Universität Duisburg-Essen)

    pni-data/TRR289_A04_NOVIS’s past year of commit activity
    1 0 0 0 Updated Jan 15, 2025
  • TRR289_A03_EEGA3 Public

    Project A03 - PI: Michael Rose (Universität Hamburg)

    pni-data/TRR289_A03_EEGA3’s past year of commit activity
    0 0 0 0 Updated Jan 15, 2025
  • TRR289_A02_AKPLA Public

    Project A02 - PI: Christian Büchel (UKE Hamburg)

    pni-data/TRR289_A02_AKPLA’s past year of commit activity
    0 0 0 0 Updated Jan 15, 2025
  • TRR289_A01_COLA_MRT Public

    Project A01 - PI: Ulrike Bingel (Universität Duisburg-Essen)

    pni-data/TRR289_A01_COLA_MRT’s past year of commit activity
    0 0 0 1 Updated Jan 15, 2025
  • TRR289_A01_COLA Public

    Project A01 - PI: Ulrike Bingel (Universität Duisburg-Essen)

    pni-data/TRR289_A01_COLA’s past year of commit activity
    0 0 0 0 Updated Jan 15, 2025
  • TRR289_A11 Public

    Project A11 - PI: Sven Benson (Universität Duisburg-Essen), Hana Rohn (Universität Duisburg-Essen)

    pni-data/TRR289_A11’s past year of commit activity
    0 0 0 0 Updated Jan 15, 2025
  • pni-data/TRR289_A03_EEGA3C’s past year of commit activity
    0 0 0 0 Updated Dec 3, 2024
  • TRR289_A01_DOPLA Public

    Project A01 - PI: Ulrike Bingel (Universität Duisburg-Essen)

    pni-data/TRR289_A01_DOPLA’s past year of commit activity
    0 0 0 1 Updated Sep 24, 2024
  • TRR289_A01_OLPIMI Public

    Project A01 - PI: Ulrike Bingel (Universität Duisburg-Essen)

    pni-data/TRR289_A01_OLPIMI’s past year of commit activity
    0 0 0 1 Updated Sep 24, 2024
  • TRR289_A01_SOPA Public

    Project A01 - PI: Ulrike Bingel (Universität Duisburg-Essen)

    pni-data/TRR289_A01_SOPA’s past year of commit activity
    0 0 0 1 Updated Sep 24, 2024

People

This organization has no public members. You must be a member to see who’s a part of this organization.

Top languages

Loading…

Most used topics

Loading…