-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
168 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
# 总线 | ||
|
||
![总线](6.总线.png) | ||
|
||
|
||
|
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
# 输入输出系统 | ||
|
||
![输入输出系统](7.输入输出系统.png) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# 普通对称性与轮换对称性 | ||
|
||
* [普通对称性](#普通对称性) | ||
* [轮换对称性](#轮换对称性) | ||
* [经典例题](#经典例题) | ||
|
||
## 普通对称性 | ||
|
||
$$ | ||
若 D 关于 y 轴对称,则 \iint_D{f(x , y)}d\sigma = | ||
\begin{cases} | ||
2\iint_{D_1}{f(x , y)}d\sigma , f(x , y) = f(-x , y) , | ||
\\ | ||
0 , f(x , y) = -f(-x , y) . | ||
\end{cases} | ||
$$ | ||
|
||
$$ | ||
若 D 关于 x = a (a \neq 0) 对称,则 \iint_D{f(x , y)}d\sigma = | ||
\begin{cases} | ||
2\iint_{D_1}{f(x , y)}d\sigma , f(x , y) = f(2a - x , y) , | ||
\\ | ||
0 , f(x , y) = -f(2a - x , y) . | ||
\end{cases} | ||
$$ | ||
|
||
$$ | ||
若 D 关于 x 轴对称,则 \iint_D{f(x , y)}d\sigma = | ||
\begin{cases} | ||
2\iint_{D_1}{f(x , y)}d\sigma , f(x , y) = f(x , -y) , | ||
\\ | ||
0 , f(x , y) = -f(x , -y) . | ||
\end{cases} | ||
$$ | ||
|
||
$$ | ||
若 D 关于 y = a (a \neq 0) 对称,则 \iint_D{f(x , y)}d\sigma = | ||
\begin{cases} | ||
2\iint_{D_1}{f(x , y)}d\sigma , f(x , y) = f(x , 2a - y) , | ||
\\ | ||
0 , f(x , y) = -f(x , 2a - y) . | ||
\end{cases} | ||
$$ | ||
|
||
$$ | ||
若 D 关于原点对称,则 \iint_D{f(x , y)}d\sigma = | ||
\begin{cases} | ||
2\iint_{D_1}{f(x , y)}d\sigma , f(x , y) = f(-x , -y) , | ||
\\ | ||
0 , f(x , y) = -f(-x , -y) . | ||
\end{cases} | ||
$$ | ||
|
||
$$ | ||
若 D 关于 y = x 对称,则 \iint_D{f(x , y)}d\sigma = | ||
\begin{cases} | ||
2\iint_{D_1}{f(x , y)}d\sigma , f(x , y) = f(y , x) , | ||
\\ | ||
0 , f(x , y) = -f(y , x) . | ||
\end{cases} | ||
$$ | ||
|
||
## 轮换对称性 | ||
|
||
$$ | ||
在直角坐标系下,若把 x 和 y 对调后,区域 D 不变(或区域 D 关于 y = x 对称),则 \iint_D{f(x , y)}d\sigma = \iint_D{f(y , x)}d\sigma . | ||
\\ | ||
若 f(x , y) + f(y , x) = a ,则 I = \frac{1}{2}\iint_D{[f(x , y) + f(y , x)]}dxdy = \frac{1}{2}\iint_D{a}dxdy = \frac{a}{2}S_D . | ||
$$ | ||
|
||
## 经典例题 | ||
|
||
$$ | ||
如:设 f(x) = \iint_{D(x)}{\frac{v\ln{\sqrt{u ^ 2 + v ^ 2}}}{u + v}}dudv , D(x) = \{(u , v)|\frac{1}{4} \le u ^ 2 + v ^ 2 \le x ^ 2 , u \gt 0 , v \gt 0\} ,求 f(x) . | ||
\\ | ||
由轮换对称性可得, f(x) = \iint_{D(x)}{\frac{v\ln{\sqrt{u ^ 2 + v ^ 2}}}{u + v}}dudv = \iint_{D(x)}{\frac{u\ln{\sqrt{u ^ 2 + v ^ 2}}}{u + v}}dudv = \frac{1}{2}\iint_{D(x)}{\ln{\sqrt{u ^ 2 + v ^ 2}}}dudv , | ||
\\ | ||
\therefore f(x) = \frac{1}{4}\iint_{D(x)}{\ln{(u ^ 2 + v ^ 2)}}dudv . | ||
$$ | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
# 二重积分计算 | ||
|
||
* [直角坐标系下计算](#直角坐标系下计算) | ||
* [极坐标系下计算](#极坐标系下计算) | ||
* [经典例题](#经典例题) | ||
|
||
## 直角坐标系下计算 | ||
|
||
$$ | ||
\ | ||
\ | ||
\iint_D{f(x , y)}d\sigma = \int_{a} ^ {b}{dx}\int_{\phi_1(x)} ^ {\phi_2(x)}{f(x , y)}dy ,其中 D 为 X 型区域: \phi_1(x) \le y \le \phi_2(x) , a \le x \le b . | ||
$$ | ||
|
||
$$ | ||
\ | ||
\ | ||
\iint_D{f(x , y)}d\sigma = \int_{c} ^ {d}{dy}\int_{\psi_1(y)} ^ {\psi_2(y)}{f(x , y)}dx ,其中 D 为 Y 型区域: \psi_1(y) \le y \le \psi_2(y) , c \le x \le d . | ||
$$ | ||
|
||
## 极坐标系下计算 | ||
|
||
$$ | ||
\iint_D{f(x , y)}d\sigma = \int_{\alpha} ^ {\beta}d\theta\int_{r_1(\theta)} ^ {r_2(\theta)}{f(r\cos{\theta} , r\sin{\theta})}rdr (极点 O 在区域 D 外部) . | ||
\\ | ||
\iint_D{f(x , y)}d\sigma = \int_{\alpha} ^ {\beta}d\theta\int_{0} ^ {r(\theta)}{f(r\cos{\theta} , r\sin{\theta})}rdr (极点 O 在区域 D 边界上) . | ||
\\ | ||
\iint_D{f(x , y)}d\sigma = \int_{0} ^ {2\pi}d\theta\int_{0} ^ {r(\theta)}{f(r\cos{\theta} , r\sin{\theta})}rdr (极点 O 在区域 D 内部) . | ||
$$ | ||
|
||
## 经典例题 | ||
|
||
$$ | ||
如:当 x \to 0 ^ {+} 时, f(x) = \int_{0} ^ {x ^ 2}{dy}\int_{x} ^ {\sqrt{y}}{\sin{\frac{y}{t}}}dt 与 g(x) = a{x ^ b} 是等价无穷小量,求 ab . | ||
\\ | ||
\because \int_{0} ^ {x ^ 2}{dy}\int_{x} ^ {\sqrt{y}}{\sin{\frac{y}{t}}}dt = -\int_{0} ^ {x ^ 2}{dy}\int_{\sqrt{y}} ^ {x}{\sin{\frac{y}{t}}}dt = -\int_{0} ^ {x}{dt}\int_{0} ^ {t ^ 2}{\sin{\frac{y}{t}}}dy = \int_{0} ^ {x}{t \cdot \cos{\frac{y}{t}}|_{y = 0} ^ {y = t ^ 2}}dt = \int_{0} ^ {x}{t \cdot (\cos{t} - 1)}dt , | ||
\\ | ||
\because f(x) 与 g(x) 是等价无穷小量 , | ||
\\ | ||
\therefore \lim_{x \to 0 ^ {+}} \frac{\int_{0} ^ {x}{t \cdot (\cos{t} - 1)}dt}{a{x ^ b}} = \lim_{x \to 0 ^ {+}} \frac{x \cdot (\cos{x} - 1)}{ab{x ^ {b - 1}}} = \lim_{x \to 0 ^ {+}} \frac{-\frac{1}{2}x ^ 3}{ab{x ^ {b - 1}}} = 1 , | ||
\\ | ||
\therefore ab = -\frac{1}{2} . | ||
$$ | ||
|
||
$$ | ||
如:设区域 D = \{(x , y)|x ^ 2 + y ^ 2 \le \sqrt{2}\} ,求 \iint_D{(x ^ 2 + \frac{y ^ 2}{2})}dxdy . | ||
\\ | ||
由轮换对称性可得, I = \frac{1}{2}[\iint_D{(x ^ 2 + \frac{y ^ 2}{2})}dxdy + \iint_D{(y ^ 2 + \frac{x ^ 2}{2})}dxdy] = \frac{3}{4}\iint_D{(x ^ 2 + y ^ 2)}dxdy , | ||
\\ | ||
\therefore \frac{3}{4}\iint_D{(x ^ 2 + y ^ 2)}dxdy = \frac{3}{4}\int_{0} ^ {2\pi}d\theta\int_{0} ^ {\sqrt[4]{2}}{r ^ 3}dr = \frac{3}{4}\pi . | ||
$$ | ||
|
||
|
||
|