Skip to content

Commit

Permalink
New update
Browse files Browse the repository at this point in the history
  • Loading branch information
kuriv committed Nov 10, 2024
1 parent 5e9c970 commit 8e4d76d
Show file tree
Hide file tree
Showing 9 changed files with 168 additions and 0 deletions.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
6 changes: 6 additions & 0 deletions 考研专业课/4.计算机组成原理/6.总线/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# 总线

![总线](6.总线.png)



Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# 输入输出系统

![输入输出系统](7.输入输出系统.png)



20 changes: 20 additions & 0 deletions 考研数学/7.二重积分/1.基本性质/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,3 +35,23 @@ $$

## 经典例题

$$
D_t = \{(x , y|2{x ^ 2} + 3{y ^ 2} \le 6t)\} (t \ge 0) , f(x , y) =
\begin{cases}
\frac{\sqrt[3]{1 - (x ^ 2 + y ^ 2)} - 1}{e ^ {x ^ 2 + y ^ 2}} , (x , y) \neq (0 , 0) ,
\\
a , (x , y) = (0 , 0) ,
\end{cases}
为连续函数 F(t) = \iint_{D_t}{f(x , y)}dxdy F_{+} ^ {\prime} (0) .
\\
\because f(x , y) 为连续函数
\\
\therefore \lim_{(x , y) \to (0 , 0)} f(x , y) = \lim_{(x , y) \to (0 , 0)} \frac{\sqrt[3]{1 - (x ^ 2 + y ^ 2)} - 1}{e ^ {x ^ 2 + y ^ 2}} = \lim_{(x , y) \to (0 , 0)} \frac{-\frac{1}{3}(x ^ 2 + y ^ 2)}{x ^ 2 + y ^ 2} = -\frac{1}{3} = a
\\
\therefore F_{+} ^ {\prime} (0) = \lim_{t \to 0} \frac{F(t) - F(0)}{t - 0} = \lim_{t \to 0} \frac{F(t)}{t} = \lim_{t \to 0} \frac{\iint_{D_t}{f(x , y)}dxdy}{t} = \lim_{t \to 0} \frac{\sqrt{6}\pi{t}f(\xi , \eta)}{t} , 其中 (\xi , \eta) \in D_t
\\
\therefore \lim_{t \to 0} \frac{\sqrt{6}\pi{t}f(\xi , \eta)}{t} = -\frac{1}{3}\sqrt{6}\pi .
$$



Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# 普通对称性与轮换对称性

* [普通对称性](#普通对称性)
* [轮换对称性](#轮换对称性)
* [经典例题](#经典例题)

## 普通对称性

$$
D 关于 y 轴对称 \iint_D{f(x , y)}d\sigma =
\begin{cases}
2\iint_{D_1}{f(x , y)}d\sigmaf(x , y) = f(-x , y) ,
\\
0f(x , y) = -f(-x , y) .
\end{cases}
$$

$$
D 关于 x = a (a \neq 0) 对称 \iint_D{f(x , y)}d\sigma =
\begin{cases}
2\iint_{D_1}{f(x , y)}d\sigmaf(x , y) = f(2a - x , y) ,
\\
0f(x , y) = -f(2a - x , y) .
\end{cases}
$$

$$
D 关于 x 轴对称 \iint_D{f(x , y)}d\sigma =
\begin{cases}
2\iint_{D_1}{f(x , y)}d\sigmaf(x , y) = f(x , -y) ,
\\
0f(x , y) = -f(x , -y) .
\end{cases}
$$

$$
D 关于 y = a (a \neq 0) 对称 \iint_D{f(x , y)}d\sigma =
\begin{cases}
2\iint_{D_1}{f(x , y)}d\sigmaf(x , y) = f(x , 2a - y) ,
\\
0f(x , y) = -f(x , 2a - y) .
\end{cases}
$$

$$
D 关于原点对称 \iint_D{f(x , y)}d\sigma =
\begin{cases}
2\iint_{D_1}{f(x , y)}d\sigmaf(x , y) = f(-x , -y) ,
\\
0f(x , y) = -f(-x , -y) .
\end{cases}
$$

$$
D 关于 y = x 对称 \iint_D{f(x , y)}d\sigma =
\begin{cases}
2\iint_{D_1}{f(x , y)}d\sigmaf(x , y) = f(y , x) ,
\\
0f(x , y) = -f(y , x) .
\end{cases}
$$

## 轮换对称性

$$
在直角坐标系下若把 x y 对调后区域 D 不变或区域 D 关于 y = x 对称), \iint_D{f(x , y)}d\sigma = \iint_D{f(y , x)}d\sigma .
\\
f(x , y) + f(y , x) = a I = \frac{1}{2}\iint_D{[f(x , y) + f(y , x)]}dxdy = \frac{1}{2}\iint_D{a}dxdy = \frac{a}{2}S_D .
$$

## 经典例题

$$
f(x) = \iint_{D(x)}{\frac{v\ln{\sqrt{u ^ 2 + v ^ 2}}}{u + v}}dudvD(x) = \{(u , v)|\frac{1}{4} \le u ^ 2 + v ^ 2 \le x ^ 2u \gt 0v \gt 0\} f(x) .
\\
由轮换对称性可得f(x) = \iint_{D(x)}{\frac{v\ln{\sqrt{u ^ 2 + v ^ 2}}}{u + v}}dudv = \iint_{D(x)}{\frac{u\ln{\sqrt{u ^ 2 + v ^ 2}}}{u + v}}dudv = \frac{1}{2}\iint_{D(x)}{\ln{\sqrt{u ^ 2 + v ^ 2}}}dudv
\\
\therefore f(x) = \frac{1}{4}\iint_{D(x)}{\ln{(u ^ 2 + v ^ 2)}}dudv .
$$



54 changes: 54 additions & 0 deletions 考研数学/7.二重积分/3.二重积分计算/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# 二重积分计算

* [直角坐标系下计算](#直角坐标系下计算)
* [极坐标系下计算](#极坐标系下计算)
* [经典例题](#经典例题)

## 直角坐标系下计算

$$
\
\
\iint_D{f(x , y)}d\sigma = \int_{a} ^ {b}{dx}\int_{\phi_1(x)} ^ {\phi_2(x)}{f(x , y)}dy其中 D X 型区域\phi_1(x) \le y \le \phi_2(x) , a \le x \le b .
$$

$$
\
\
\iint_D{f(x , y)}d\sigma = \int_{c} ^ {d}{dy}\int_{\psi_1(y)} ^ {\psi_2(y)}{f(x , y)}dx其中 D Y 型区域\psi_1(y) \le y \le \psi_2(y) , c \le x \le d .
$$

## 极坐标系下计算

$$
\iint_D{f(x , y)}d\sigma = \int_{\alpha} ^ {\beta}d\theta\int_{r_1(\theta)} ^ {r_2(\theta)}{f(r\cos{\theta} , r\sin{\theta})}rdr极点 O 在区域 D 外部) .
\\
\iint_D{f(x , y)}d\sigma = \int_{\alpha} ^ {\beta}d\theta\int_{0} ^ {r(\theta)}{f(r\cos{\theta} , r\sin{\theta})}rdr极点 O 在区域 D 边界上) .
\\
\iint_D{f(x , y)}d\sigma = \int_{0} ^ {2\pi}d\theta\int_{0} ^ {r(\theta)}{f(r\cos{\theta} , r\sin{\theta})}rdr极点 O 在区域 D 内部) .
$$

## 经典例题

$$
x \to 0 ^ {+} f(x) = \int_{0} ^ {x ^ 2}{dy}\int_{x} ^ {\sqrt{y}}{\sin{\frac{y}{t}}}dt g(x) = a{x ^ b} 是等价无穷小量 ab .
\\
\because \int_{0} ^ {x ^ 2}{dy}\int_{x} ^ {\sqrt{y}}{\sin{\frac{y}{t}}}dt = -\int_{0} ^ {x ^ 2}{dy}\int_{\sqrt{y}} ^ {x}{\sin{\frac{y}{t}}}dt = -\int_{0} ^ {x}{dt}\int_{0} ^ {t ^ 2}{\sin{\frac{y}{t}}}dy = \int_{0} ^ {x}{t \cdot \cos{\frac{y}{t}}|_{y = 0} ^ {y = t ^ 2}}dt = \int_{0} ^ {x}{t \cdot (\cos{t} - 1)}dt
\\
\because f(x) g(x) 是等价无穷小量
\\
\therefore \lim_{x \to 0 ^ {+}} \frac{\int_{0} ^ {x}{t \cdot (\cos{t} - 1)}dt}{a{x ^ b}} = \lim_{x \to 0 ^ {+}} \frac{x \cdot (\cos{x} - 1)}{ab{x ^ {b - 1}}} = \lim_{x \to 0 ^ {+}} \frac{-\frac{1}{2}x ^ 3}{ab{x ^ {b - 1}}} = 1
\\
\therefore ab = -\frac{1}{2} .
$$

$$
设区域 D = \{(x , y)|x ^ 2 + y ^ 2 \le \sqrt{2}\} \iint_D{(x ^ 2 + \frac{y ^ 2}{2})}dxdy .
\\
由轮换对称性可得I = \frac{1}{2}[\iint_D{(x ^ 2 + \frac{y ^ 2}{2})}dxdy + \iint_D{(y ^ 2 + \frac{x ^ 2}{2})}dxdy] = \frac{3}{4}\iint_D{(x ^ 2 + y ^ 2)}dxdy
\\
\therefore \frac{3}{4}\iint_D{(x ^ 2 + y ^ 2)}dxdy = \frac{3}{4}\int_{0} ^ {2\pi}d\theta\int_{0} ^ {\sqrt[4]{2}}{r ^ 3}dr = \frac{3}{4}\pi .
$$



0 comments on commit 8e4d76d

Please sign in to comment.