Skip to content

Commit

Permalink
New update
Browse files Browse the repository at this point in the history
  • Loading branch information
kuriv committed Nov 8, 2024
1 parent b036bad commit 5e9c970
Show file tree
Hide file tree
Showing 6 changed files with 43 additions and 0 deletions.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# 计算机系统概述

![计算机系统概述](1.计算机系统概述.png)



Binary file not shown.
37 changes: 37 additions & 0 deletions 考研数学/7.二重积分/1.基本性质/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# 基本性质

* [定理内容](#定理内容)
* [经典例题](#经典例题)

## 定理内容

$$
\iint_D{1}d\sigma = \iint_D{}d\sigma = A其中 A D 的面积.
$$

$$
f(x , y) 在有界闭区间 D 上可积时f(x , y) D 上必有界.
$$

$$
k_1k_2 为常数 \iint_D{[{k_1}f(x , y) \pm {k_2}g(x , y)]}d\sigma = k_1\iint_D{f(x , y)}d\sigma \pm k_2\iint_D{g(x , y)}d\sigma .
$$

$$
f(x , y) 在有界闭区间 D 上可积 D_1 \cup D_2 = DD_1 \cap D_2 = \varnothing \iint_D{f(x , y)}d\sigma = \iint_{D_1}{f(x , y)}d\sigma + \iint_{D_2}{f(x , y)}d\sigma .
$$

$$
f(x , y) , g(x , y) 在有界闭区间 D 上可积时若在 D 上有 f(x , y) \le g(x , y) , \iint_D{f(x , y)}d\sigma \le \iint_D{g(x , y)}d\sigma .
$$

$$
Mm 分别是 f(x , y) 在有界闭区域 D 上的最大值和最小值A D 的面积 mA \le \iint_D{f(x , y)}d\sigma \le MA .
$$

$$
设函数 f(x , y) 在有界闭区域 D 上连续A D 的面积则在 D 上至少存在一点 (\xi , \eta) ,使得 \iint_D{f(x , y)}d\sigma = f(\xi , \eta)A .
$$

## 经典例题

0 comments on commit 5e9c970

Please sign in to comment.