Skip to content

Official code implement of Robust Classification via a Single Diffusion Model

Notifications You must be signed in to change notification settings

huanranchen/DiffusionClassifier

Repository files navigation

Diffusion Classifier


Install

Please refer to: BasicReadMe


Model Checkpoints

VP Diffusion implementation (not recommended)

There are two version of our implementation. One is based on VP-SDE proposed by Song et al. (2021). This version is not recommended, and has been depreciated. For this, you need to download:

VE Diffusion implementation (not recommended)

Another is based on Karras et al. (2022), a.k.a. EDM. We strongly recommend you to use this implementation. For this, you need to download:


Usage

Demos

We provide some demos in the root. We believe it's very clear and you will know how to use DC/RDC/LM after playing with the example code. Hence, we didn't add more explanation in this README.

LM.py: Likelihood Maximization with WRN-70-2.

DCTK.py: Diffusion Classifier on CIFAR10.

RDCN+TK.py: Robust Diffusion Classifier on CIFAR10.

Experiments

All experiments codes are in './experiments/'.

DiffAttack.py: Attack DiffPure.

DiffusionClassifierN+T: Multihead diffusion with likelihood maximization.

DiffusionClassifierTK: Off-the-shelf diffusion.

DiffusionClassifierN+TK: Off-the-shelf diffusion with likelihood maximization.

DiffusionAsClassifier: Depreciated. Test robustness of diffusion classifier (VP-SDE) under AutoAttack+BPDA/Lagrange/DirectDifferentiate

DiffusionMaximizer: Likelihood maximizer. A new diffusion purification method we proposed. See Sec 3.4 in our paper for detail. Could be combined with discriminative classifier.

DirectAttack: Direct differentiate through likelihood maximization.

ObfuscatedGradient: Measure the cosine similarity between the gradient of diffusion classifier and DiffPure. See Sec 4.4 in our paper for detail.

OptimalDiffusionClassifier: See Sec 3.3 for detail.

stadv: Measure the robustness under STAdv attack.

cifar100: Experiment on cifar100


Citation

Please cite us:

@article{chen2023robust,
  title={Robust Classification via a Single Diffusion Model},
  author={Chen, Huanran and Dong, Yinpeng and Wang, Zhengyi and Yang, Xiao and Duan, Chengqi and Su, Hang and Zhu, Jun},
  journal={arXiv preprint arXiv:2305.15241},
  year={2023}
}

If you have any question, you can contact us by:

Github issue.

Email: [email protected] (Recommended), [email protected] (Not recommended, this email will be banned 1 years later)

About

Official code implement of Robust Classification via a Single Diffusion Model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages