-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRDCN+TK.py
38 lines (30 loc) · 1.17 KB
/
RDCN+TK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from models.unets import get_edm_cifar_uncond, get_edm_cifar_cond
from data import get_CIFAR10_test
from tester import test_acc, test_apgd_dlr_acc
import argparse
from defenses.PurificationDefenses.DiffPure import EDMEulerIntegralDC, EDMEulerIntegralLM, \
diffusion_likelihood_maximizer_defense
"""
Example code of Robust Diffusion Classifier!
"""
parser = argparse.ArgumentParser()
parser.add_argument("--begin", type=int, default=0)
parser.add_argument("--end", type=int, default=512)
parser.add_argument("--steps", type=int, default=126)
args = parser.parse_args()
begin, end, steps = args.begin, args.end, args.steps
model = get_edm_cifar_cond().cuda()
test_loader = get_CIFAR10_test(batch_size=1)
test_loader = [item for i, item in enumerate(test_loader) if begin <= i < end]
dc = EDMEulerIntegralDC(unet=model, timesteps=torch.linspace(1e-4, 3, steps))
dc.share_noise = True
uncond_edm_net = get_edm_cifar_uncond()
uncond_edm_dc = EDMEulerIntegralDC(unet=uncond_edm_net)
lm = EDMEulerIntegralLM(uncond_edm_dc)
rdc = diffusion_likelihood_maximizer_defense(
dc,
lm.likelihood_maximization_T1,
)
test_acc(rdc, test_loader)
test_apgd_dlr_acc(rdc, loader=test_loader)