forked from AlexsLemonade/OpenPBTA-analysis
-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add UMAP script #570
Closed
Closed
add UMAP script #570
Changes from 12 commits
Commits
Show all changes
17 commits
Select commit
Hold shift + click to select a range
c4dc61e
add UMAP script
e207461
add UMAPs for other MB subtypes, additional SHH features
ca410fd
rm intermediate file
28835ae
replace tiffs with pdfs
b9bfde6
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb 605ed86
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb d9988f1
rerun with updated subtyping
rjcorb 58a4c78
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb 9ed337f
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb c05eb72
use 20k most variable probes
rjcorb 746003d
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb 404a60c
add tp53 status UMAP, save UMAP output
rjcorb 0e223bc
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb d094680
specify non-MB methylation samples in umaps
rjcorb c5387e9
Merge branch 'rjcorb/564-mb-shh-subtyping' into rjcorb/569-mb-shh-umap
rjcorb ea8b37e
rerun with updated subtyping
rjcorb a6fa5b9
rm outdated plots
rjcorb File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,351 @@ | ||
--- | ||
title: 'Create MB SHH methylation UMAP' | ||
output: | ||
html_document: | ||
toc: TRUE | ||
toc_float: TRUE | ||
author: Ryan Corbett | ||
date: "2024" | ||
--- | ||
|
||
Load libraries and set directory paths | ||
```{r} | ||
suppressPackageStartupMessages({ | ||
library(tidyverse) | ||
library(umap) | ||
library(ggplot2) | ||
library(devtools) | ||
library(gdata) | ||
}) | ||
|
||
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git")) | ||
|
||
data_dir <- file.path(root_dir, "data") | ||
analysis_dir <- file.path(root_dir, "analyses", "molecular-subtyping-MB") | ||
results_dir <- file.path(analysis_dir, "results") | ||
input_dir <- file.path(analysis_dir, "input") | ||
plots_dir <- file.path(analysis_dir, "plot") | ||
``` | ||
|
||
Set file paths | ||
```{r} | ||
hist_file <- file.path(data_dir, "histologies.tsv") | ||
methyl_file <- file.path(data_dir, "v14", "methyl-beta-values.rds") | ||
mb_shh_file <- file.path(results_dir, "mb_shh_subtypes_w_molecular_data.tsv") | ||
``` | ||
|
||
Wrangle data | ||
```{r get methyl ids} | ||
hist <- read_tsv(hist_file) | ||
|
||
mb_shh_subtypes <- read_tsv(mb_shh_file) | ||
``` | ||
|
||
Filter hist for mb shh methyl samples, and append to subtype df | ||
```{r} | ||
hist_mb_methyl <- hist %>% | ||
dplyr::filter(pathology_diagnosis == "Medulloblastoma", | ||
experimental_strategy == "Methylation") %>% | ||
dplyr::rename(Kids_First_Biospecimen_ID_methyl = Kids_First_Biospecimen_ID) | ||
|
||
mb_shh_subtypes <- read_tsv(mb_shh_file) %>% | ||
left_join(hist_mb_methyl %>% | ||
dplyr::select(match_id, Kids_First_Biospecimen_ID_methyl)) %>% | ||
dplyr::filter(!is.na(Kids_First_Biospecimen_ID_methyl)) %>% | ||
distinct(match_id, Kids_First_Biospecimen_ID_methyl, .keep_all = TRUE) %>% | ||
# redefine un-subtyped samples as "unk" | ||
dplyr::mutate(molecular_subtype = case_when( | ||
molecular_subtype == "MB, SHH" ~ "MB, SHH unk", | ||
TRUE ~ molecular_subtype | ||
)) %>% | ||
dplyr::mutate(molecular_subtype = fct_relevel(molecular_subtype, | ||
c("MB, SHH alpha", "MB, SHH beta", | ||
"MB, SHH gamma", "MB, SHH delta", | ||
"MB, SHH unk"))) | ||
``` | ||
|
||
Get number of samples by MB SHH subtype | ||
```{r} | ||
table(mb_shh_subtypes$SHH_subtype) | ||
``` | ||
|
||
Load methylation data and filter for ids in `mb_shh_subtypes` | ||
```{r load methyl} | ||
methyl <- readRDS(methyl_file) | ||
|
||
mb_methyl <- methyl[,colnames(methyl) %in% c("Probe_ID", hist_mb_methyl$Kids_First_Biospecimen_ID_methyl)] | ||
|
||
mb_methyl <- mb_methyl %>% | ||
distinct(Probe_ID, .keep_all = TRUE) %>% | ||
column_to_rownames("Probe_ID") | ||
``` | ||
|
||
Identify 10k most variable probes among MB samples | ||
```{r} | ||
mb_methyl_var <- apply(mb_methyl, 1, var, na.rm = TRUE) | ||
|
||
mb_var_probes <- names(sort(mb_methyl_var, decreasing = TRUE)[1:20000]) | ||
``` | ||
|
||
```{r} | ||
set.seed(2024) | ||
|
||
mb_umap_results <- umap::umap(t(mb_methyl[mb_var_probes, ])) | ||
mb_umap_plot_df <- data.frame(mb_umap_results$layout) %>% | ||
tibble::rownames_to_column("Kids_First_Biospecimen_ID_methyl") %>% | ||
left_join(hist_mb_methyl) | ||
``` | ||
|
||
Plot UMAP with molecular subtype and age range | ||
```{r} | ||
mb_umap_plot_df %>% | ||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = molecular_subtype)) + | ||
geom_point(alpha = 0.7) + | ||
labs(color = "molecular subtype") + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") | ||
|
||
ggsave(file.path(plots_dir, "umap_mb.pdf"), | ||
width = 5.5, height = 3.5) | ||
``` | ||
|
||
Identify 10k most variable probes among MB Group 3/4 samples | ||
```{r} | ||
g34_samples <- hist_mb_methyl %>% | ||
dplyr::filter(molecular_subtype %in% c("MB, Group3", "MB, Group4")) %>% | ||
pull(Kids_First_Biospecimen_ID_methyl) | ||
|
||
mb_g34_methyl_var <- apply(mb_methyl[,colnames(mb_methyl) %in% g34_samples], 1, var, na.rm = TRUE) | ||
|
||
mb_g34_var_probes <- names(sort(mb_g34_methyl_var, decreasing = TRUE)[1:20000]) | ||
``` | ||
|
||
```{r} | ||
set.seed(2024) | ||
|
||
mb_g34_umap_results <- umap::umap(t(mb_methyl[mb_g34_var_probes, colnames(mb_methyl) %in% g34_samples])) | ||
mb_g34_umap_plot_df <- data.frame(mb_g34_umap_results$layout) %>% | ||
tibble::rownames_to_column("Kids_First_Biospecimen_ID_methyl") %>% | ||
left_join(hist_mb_methyl) | ||
``` | ||
|
||
Plot UMAP with molecular subtype and age range | ||
```{r} | ||
mb_g34_umap_plot_df %>% | ||
dplyr::filter(grepl("MB_G34", dkfz_v12_methylation_subclass)) %>% | ||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = dkfz_v12_methylation_subclass, | ||
shape = molecular_subtype)) + | ||
geom_point(alpha = 0.7) + | ||
labs(color = "methylation subtype", | ||
shape = "molecular subtype") + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") | ||
|
||
ggsave(file.path(plots_dir, "umap_mb_group34.pdf"), | ||
width = 5.5, height = 3.5) | ||
``` | ||
|
||
|
||
Identify 10k most variable probes among MB SHH samples | ||
```{r} | ||
mb_shh_methyl_var <- apply(mb_methyl[,colnames(mb_methyl) %in% mb_shh_subtypes$Kids_First_Biospecimen_ID_methyl], 1, var, na.rm = TRUE) | ||
|
||
mb_shh_var_probes <- names(sort(mb_shh_methyl_var, decreasing = TRUE)[1:20000]) | ||
``` | ||
|
||
Generate UMAP df | ||
```{r} | ||
set.seed(2024) | ||
|
||
mb_shh_umap_results <- umap::umap(t(mb_methyl[mb_shh_var_probes, colnames(mb_methyl) %in% mb_shh_subtypes$Kids_First_Biospecimen_ID_methyl])) | ||
mb_shh_umap_plot_df <- data.frame(mb_shh_umap_results$layout) %>% | ||
tibble::rownames_to_column("Kids_First_Biospecimen_ID_methyl") %>% | ||
inner_join(mb_shh_subtypes) | ||
|
||
mb_shh_umap_plot_df <- mb_shh_umap_plot_df %>% | ||
dplyr::mutate(age_range = case_when( | ||
age_at_diagnosis_years <= 5 ~ "0-5", | ||
age_at_diagnosis_years <= 10 ~ "5-10", | ||
age_at_diagnosis_years <= 15 ~ "10-15", | ||
TRUE ~ ">15" | ||
)) %>% | ||
dplyr::mutate(age_range = fct_relevel(age_range, | ||
c("0-5", "5-10", | ||
"10-15", ">15"))) %>% | ||
dplyr::mutate(consensus_CN_MYCN = case_when( | ||
is.na(consensus_CN_MYCN) ~ "neutral", | ||
TRUE ~ consensus_CN_MYCN | ||
)) %>% | ||
dplyr::mutate(consensus_CN_GLI2 = case_when( | ||
is.na(consensus_CN_GLI2) ~ "neutral", | ||
TRUE ~ consensus_CN_GLI2 | ||
)) %>% | ||
dplyr::mutate(consensus_CN_CCND2 = case_when( | ||
is.na(consensus_CN_CCND2) ~ "neutral", | ||
TRUE ~ consensus_CN_CCND2 | ||
)) %>% | ||
dplyr::mutate(consensus_CN_PTEN = case_when( | ||
is.na(consensus_CN_PTEN) ~ "neutral", | ||
TRUE ~ consensus_CN_PTEN | ||
)) %>% | ||
dplyr::mutate(classification_source = case_when( | ||
classification_source == "Genomic/Expression" ~ "Molecular", | ||
is.na(classification_source) ~ "Unavailable", | ||
TRUE ~ classification_source | ||
)) %>% | ||
write_tsv(file.path(results_dir, "mb_shh_subtypes_w_molecular_umap_data.tsv")) | ||
``` | ||
|
||
Plot UMAP with molecular subtype, classification source, and age range | ||
```{r} | ||
mb_shh_umap_plot_df %>% | ||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = molecular_subtype, | ||
size = age_range, | ||
shape = classification_source)) + | ||
geom_point(alpha = 0.7) + | ||
labs(color = "molecular subtype", | ||
size = "age range (years)", | ||
shape = "classifcation source") + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") + | ||
# colors to match subtypes in Garcia-Lopez 2020 review | ||
scale_color_manual(values = c("aquamarine3", "goldenrod2", | ||
"royalblue1", "plum4", | ||
"gray")) + | ||
guides(color = guide_legend(order = 1), | ||
shape = guide_legend(order = 2), | ||
size = guide_legend(order = 3)) | ||
|
||
ggsave(file.path(plots_dir, "umap_mb_shh.pdf"), | ||
width = 6.5, height = 4.5) | ||
``` | ||
|
||
Plot UMAP with methylation subtype and methylation score | ||
|
||
```{r} | ||
mb_shh_umap_plot_df %>% | ||
dplyr::filter(grepl("MB", dkfz_v12_methylation_subclass_collapsed)) %>% | ||
|
||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = dkfz_v12_methylation_subclass_collapsed, | ||
alpha = dkfz_v12_methylation_subclass_score_mean)) + | ||
geom_point(size = 3) + | ||
labs(color = "methylation subtype", | ||
alpha = "methylation subtype score") + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") + | ||
# colors to match subtypes in Garcia-Lopez 2020 review | ||
scale_color_manual(values = c("goldenrod2", "royalblue1", | ||
"aquamarine3", "plum4")) | ||
|
||
ggsave(file.path(plots_dir, "umap_mb_shh_methylation_subtype.pdf"), | ||
width = 5.5, height = 3.5) | ||
``` | ||
|
||
Plot UMAP with CN status for MYCN, GLI2, CCND2, and PTEN | ||
|
||
```{r} | ||
umap_plot_cn_df <- mb_shh_umap_plot_df %>% | ||
dplyr::select(molecular_subtype, X1, X2, | ||
consensus_CN_MYCN, | ||
consensus_CN_GLI2, | ||
consensus_CN_CCND2, | ||
consensus_CN_PTEN) %>% | ||
dplyr::rename(MCYN = consensus_CN_MYCN, | ||
GLI2 = consensus_CN_GLI2, | ||
CCND2 = consensus_CN_CCND2, | ||
PTEN = consensus_CN_PTEN) %>% | ||
gather(key = "gene_name", value = "CN_status", | ||
-molecular_subtype, -X1, -X2) | ||
|
||
umap_plot_cn_df %>% | ||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = molecular_subtype, | ||
shape = CN_status)) + | ||
geom_point(alpha = 0.7, size = 3) + | ||
labs(color = "methylation subtype", | ||
shape = "CN status") + | ||
facet_wrap(~gene_name, nrow = 2) + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") + | ||
# colors to match subtypes in Garcia-Lopez 2020 review | ||
scale_color_manual(values = c("aquamarine3", "goldenrod2", | ||
"royalblue1", "plum4", | ||
"gray")) | ||
|
||
ggsave(file.path(plots_dir, "umap_mb_shh_cn_status.pdf"), | ||
width = 8, height = 5.5) | ||
``` | ||
|
||
Plot UMAP with TP53 alteration status | ||
|
||
```{r} | ||
mb_shh_umap_plot_df %>% | ||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = molecular_subtype, | ||
shape = tp53_status)) + | ||
geom_point(alpha = 0.7, size = 3) + | ||
labs(color = "methylation subtype", | ||
shape = "TP53 status") + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") + | ||
# colors to match subtypes in Garcia-Lopez 2020 review | ||
scale_color_manual(values = c("aquamarine3", "goldenrod2", | ||
"royalblue1", "plum4", | ||
"gray")) | ||
|
||
ggsave(file.path(plots_dir, "umap_mb_shh_tp53_status.pdf"), | ||
width = 5.5, height = 3.5) | ||
``` | ||
|
||
Identify 10k most variable probes among MB samples | ||
```{r} | ||
wnt_samples <- hist_mb_methyl %>% | ||
dplyr::filter(molecular_subtype %in% c("MB, WNT")) %>% | ||
pull(Kids_First_Biospecimen_ID_methyl) | ||
|
||
mb_wnt_methyl_var <- apply(mb_methyl[,colnames(mb_methyl) %in% wnt_samples], 1, var, na.rm = TRUE) | ||
|
||
mb_wnt_var_probes <- names(sort(mb_wnt_methyl_var, decreasing = TRUE)[1:20000]) | ||
``` | ||
|
||
```{r} | ||
set.seed(2024) | ||
|
||
mb_wnt_umap_results <- umap::umap(t(mb_methyl[mb_wnt_var_probes, colnames(mb_methyl) %in% wnt_samples])) | ||
mb_wnt_umap_plot_df <- data.frame(mb_wnt_umap_results$layout) %>% | ||
tibble::rownames_to_column("Kids_First_Biospecimen_ID_methyl") %>% | ||
left_join(hist_mb_methyl) | ||
|
||
``` | ||
|
||
Plot UMAP with molecular subtype and age range | ||
```{r} | ||
mb_wnt_umap_plot_df %>% | ||
ggplot(aes(x = X1, | ||
y = X2, | ||
color = dkfz_v12_methylation_subclass)) + | ||
geom_point(alpha = 0.7, size = 3) + | ||
labs(color = "methylation subtype") + | ||
theme_bw() + | ||
xlab("UMAP1") + | ||
ylab("UMAP2") | ||
|
||
ggsave(file.path(plots_dir, "umap_mb_wnt.pdf"), | ||
width = 5.5, height = 3.5) | ||
``` |
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added
BIN
+16.6 KB
analyses/molecular-subtyping-MB/plot/umap_mb_shh_methylation_subtype.pdf
Binary file not shown.
Binary file not shown.
Binary file not shown.
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This night be a typo, do you mean 20k?