Releases
v3.3.0
Version Updates
3.3.0
Add argument .type
with options "glance"
and "tidy"
to summary.MLModelFit()
.
Add case components data (stratification and grouping variables) to print.Resample()
.
Add class and methods for ModelSpecification
.
Add training parameters set functions
set_monitor()
: monitoring of resampling and optimization
set_optim_bayes()
: Bayesian optimization with a Gaussian process model
set_optim_bfgs()
: low-memory quasi-Newton BFGS optimization
set_optim_grid()
: exhaustive and random grid searches
set_optim_method()
: user-defined optimization functions
set_optim_pso()
: particle swarm optimization
set_optim_sann()
: simulated annealing
Add performance()
method for MLModel
to replicate the previous behavior of summary.MLModel()
.
Add performance()
, plot()
, and summary()
methods for TrainingStep
.
Add support for unordered plots of Resample
performances.
Changes to argument type
of predict()
.
Add option "default"
for model-specific default predictions.
Add option "numeric"
for numeric predictions.
Change option "prob"
to be for probabilities between 0 and 1.
Change confusion()
default behavior to convert factor probabilities to levels.
Rename argument control
to object
in set functions.
Rename argument f
to fun
in roc_index()
.
Return a ListOf
training step summaries from summary.MLModel()
.
Return a TrainingStep
object from rfe()
.
Support tibble-convertible objects as arguments to expand_params()
.
Internal changes
Add class EnsembleModel
.
Add classes MLOptimization
, GridSearch
, NullOptimization
, RandomGridSearch
, and SequentialOptimization
.
Add class NullControl
.
Add slot control
to PerformanceCurve
.
Add slot method
to TrainingStep
.
Add slot optim
to TrainingParams
.
Add slot params
to MLInput
.
Inherit class SelectedModel
from EnsembleModel
.
Inherit class StackedModel
from EnsembleModel
.
Inherit class SuperModel
from StackedModel
.
Rename slot case_comps
to vars
in Resample
.
Rename slot grid
to log
in TrainingStep
.
Fixes
error predicting single factor response in GLMModel
'size(x@performance, 3)' error in print.TrainingStep()
'Unmatched tuning parameters' error in TunedModel()
3.2.1
Fix 'data' argument of wrong type error in terms.formula()
.
Require >= 3.1.0 version of cli package.
You can’t perform that action at this time.