Skip to content

Releases: brian-j-smith/MachineShop

MachineShop 3.8.0

19 Aug 19:26
Compare
Choose a tag to compare

Version Updates

3.8.0

  • Changes to varimp() arguments.
    • Add argument sort.
    • Extend argument scale to vectors of logical.
  • Changes to model-based variable importance.
    • Fix unused argument error from CForestModel.
    • Use drop1() to compute model term-specific p-values for CoxModel, POLRModel, and SurvRegModel as is done for GLMModel and LMModel.
  • Changes to VariableImportance class.
    • Add slots method and metric to store the computational method ("permute" or "model") and the performance metric used for computations.
    • Add update() method to add the new slots to objects created with previous versions of the package.
  • Deprecate type = "default" option in predict() and replace it with type = "raw".
  • Fix unimplemented type 'list' in 'listgreater' error from SelectedInput.recipe().

MachineShop 3.7.0

18 Sep 17:58
Compare
Choose a tag to compare

Version Updates

3.7.0

  • Compatibility updates for parsnip.
  • Enable resampling by a grouping variable with BootControl, OOBControl, and SplitControl.
  • Enable resampling by a stratification variable with SplitControl.
  • Require R 4.1.0 or later.

MachineShop 3.6.2

21 Mar 14:28
Compare
Choose a tag to compare

Version Updates

3.6.2

  • Add backward compatibility for older MLModel objects without a na.rm slot.
  • Fix CRAN check warning: S3 generic/method consistency.
  • Update role_binom(), role_case(), and role_surv() to remove the requirement that their variables be present in newdata supplied to predict().

MachineShop 3.6.1

02 Feb 00:54
Compare
Choose a tag to compare

Version Updates

3.6.1

  • Compatibility updates for ggplot2, Matrix, and recipes package dependencies.

MachineShop 3.6.0

05 Sep 22:50
Compare
Choose a tag to compare

Version Updates

3.6.0

  • Add argument na.rm to MLModel() for construction of a model that automatically removes all cases with missing values from model fitting and prediction, none, or only those whose missing values are in the response variable. Set the na.rm values in supplied MLModels to automatically remove cases with missing values if not supported by their model fitting and prediction functions.
  • Add argument prob.model to SVMModel().
  • Add argument verbose to fit() and predict().
  • Fix Error in as.data.frame(x) : object 'x' not found issue when fitting a BARTMachineModel that started occurring with bartMachine package version 1.2.7.
  • Remove expired deprecations of ModeledInput and rpp().
  • Internal changes
    • Add slot na.rm to MLModel.

MachineShop 3.5.0

03 Jun 12:55
Compare
Choose a tag to compare

Version Updates

3.5.0

  • Add argument method to r2() for calculation of Pearson or Spearman correlation.
  • Add predict() S4 method for MLModelFit.
  • Export MLModelFunction().
  • Export as.MLInput() methods for MLModelFit and ModelSpecification.
  • Export as.MLModel() method for ModelSpecification.
  • Improve recursive feature elimination of SelectedInput terms.
  • Improve speed of StackedModel and SuperModel.
  • Internal changes
    • Add .MachineShop list attribute to MLModelFit.
    • Move field mlmodel in MLModelFit to model in .MachineShop.
    • Move slot input in MLModel to .MachineShop.
    • Pass .MachineShop to the predict and varimp slot functions of MLModel.

MachineShop 3.4.3

19 Apr 14:11
Compare
Choose a tag to compare

Version Updates

3.4.3

  • Fix TypeError in dependence() with numeric dummy variables from recipes.
  • Prep ModelRecipe with retain = TRUE for recipe steps that are skipped, for example, when test datasets are created.
  • Add generalized area under performance curves to auc(), pr_auc(), and roc_auc() for multiclass factor responses.

MachineShop 3.4.2

04 Apr 20:52
Compare
Choose a tag to compare

Version Updates

3.4.2

  • Add argument select to rfe().
  • Fix object perf_stats not found in optim().

MachineShop 3.4.1

22 Mar 01:15
Compare
Choose a tag to compare

Version Updates

3.4.1

  • Add argument conf to set_optim_bayes().
  • Enable global grid expansion and tuning of StackedModel and SuperModel in ModelSpecification().

3.4.0

  • Fixes
    • Enable prediction with survival times of 0.
  • Implement class SelectedModelSpecification.
  • Internal changes
    • Deprecate classes ModeledInput, ModeledFrame, and ModeledRecipe.
    • Remove unused class TunedModeledRecipe.
  • Expire deprecations
    • Remove argument fixed from TunedModel().
    • Remove Grid().
  • Rename rpp() to ppr().
  • Replace ModeledInput() with ModelSpecification().
  • Require R >= 4.0.0.
  • Use Olden algorithm for NNetModel model-specific variable importance.

MachineShop 3.3.0

09 Feb 13:46
Compare
Choose a tag to compare

Version Updates

3.3.0

  • Add argument .type with options "glance" and "tidy" to summary.MLModelFit().
  • Add case components data (stratification and grouping variables) to print.Resample().
  • Add class and methods for ModelSpecification.
  • Add training parameters set functions
    • set_monitor(): monitoring of resampling and optimization
    • set_optim_bayes(): Bayesian optimization with a Gaussian process model
    • set_optim_bfgs(): low-memory quasi-Newton BFGS optimization
    • set_optim_grid(): exhaustive and random grid searches
    • set_optim_method(): user-defined optimization functions
    • set_optim_pso(): particle swarm optimization
    • set_optim_sann(): simulated annealing
  • Add performance() method for MLModel to replicate the previous behavior of summary.MLModel().
  • Add performance(), plot(), and summary() methods for TrainingStep.
  • Add support for unordered plots of Resample performances.
  • Changes to argument type of predict().
    • Add option "default" for model-specific default predictions.
    • Add option "numeric" for numeric predictions.
    • Change option "prob" to be for probabilities between 0 and 1.
  • Change confusion() default behavior to convert factor probabilities to levels.
  • Rename argument control to object in set functions.
  • Rename argument f to fun in roc_index().
  • Return a ListOf training step summaries from summary.MLModel().
  • Return a TrainingStep object from rfe().
  • Support tibble-convertible objects as arguments to expand_params().
  • Internal changes
    • Add class EnsembleModel.
    • Add classes MLOptimization, GridSearch, NullOptimization, RandomGridSearch, and SequentialOptimization.
    • Add class NullControl.
    • Add slot control to PerformanceCurve.
    • Add slot method to TrainingStep.
    • Add slot optim to TrainingParams.
    • Add slot params to MLInput.
    • Inherit class SelectedModel from EnsembleModel.
    • Inherit class StackedModel from EnsembleModel.
    • Inherit class SuperModel from StackedModel.
    • Rename slot case_comps to vars in Resample.
    • Rename slot grid to log in TrainingStep.
  • Fixes
    • error predicting single factor response in GLMModel
    • 'size(x@performance, 3)' error in print.TrainingStep()
    • 'Unmatched tuning parameters' error in TunedModel()

3.2.1

  • Fix 'data' argument of wrong type error in terms.formula().
  • Require >= 3.1.0 version of cli package.