Releases: brian-j-smith/MachineShop
Releases · brian-j-smith/MachineShop
MachineShop 3.8.0
Version Updates
3.8.0
- Changes to
varimp()
arguments.- Add argument
sort
. - Extend argument
scale
to vectors of logical.
- Add argument
- Changes to model-based variable importance.
- Fix unused argument error from
CForestModel
. - Use
drop1()
to compute model term-specific p-values forCoxModel
,POLRModel
, andSurvRegModel
as is done forGLMModel
andLMModel
.
- Fix unused argument error from
- Changes to
VariableImportance
class.- Add slots
method
andmetric
to store the computational method ("permute"
or"model"
) and the performance metric used for computations. - Add
update()
method to add the new slots to objects created with previous versions of the package.
- Add slots
- Deprecate
type = "default"
option inpredict()
and replace it withtype = "raw"
. - Fix unimplemented type 'list' in 'listgreater' error from
SelectedInput.recipe()
.
MachineShop 3.7.0
Version Updates
3.7.0
- Compatibility updates for parsnip.
- Enable resampling by a grouping variable with
BootControl
,OOBControl
, andSplitControl
. - Enable resampling by a stratification variable with
SplitControl
. - Require R 4.1.0 or later.
MachineShop 3.6.2
Version Updates
3.6.2
- Add backward compatibility for older
MLModel
objects without ana.rm
slot. - Fix CRAN check warning: S3 generic/method consistency.
- Update
role_binom()
,role_case()
, androle_surv()
to remove the requirement that their variables be present innewdata
supplied topredict()
.
MachineShop 3.6.1
Version Updates
3.6.1
- Compatibility updates for ggplot2, Matrix, and recipes package dependencies.
MachineShop 3.6.0
Version Updates
3.6.0
- Add argument
na.rm
toMLModel()
for construction of a model that automatically removes all cases with missing values from model fitting and prediction, none, or only those whose missing values are in the response variable. Set thena.rm
values in suppliedMLModels
to automatically remove cases with missing values if not supported by their model fitting and prediction functions. - Add argument
prob.model
toSVMModel()
. - Add argument
verbose
tofit()
andpredict()
. - Fix
Error in as.data.frame(x) : object 'x' not found
issue when fitting aBARTMachineModel
that started occurring withbartMachine
package version 1.2.7. - Remove expired deprecations of
ModeledInput
andrpp()
. - Internal changes
- Add slot
na.rm
toMLModel
.
- Add slot
MachineShop 3.5.0
Version Updates
3.5.0
- Add argument
method
tor2()
for calculation of Pearson or Spearman correlation. - Add
predict()
S4 method forMLModelFit
. - Export
MLModelFunction()
. - Export
as.MLInput()
methods forMLModelFit
andModelSpecification
. - Export
as.MLModel()
method forModelSpecification
. - Improve recursive feature elimination of
SelectedInput
terms. - Improve speed of
StackedModel
andSuperModel
. - Internal changes
- Add
.MachineShop
list attribute toMLModelFit
. - Move field
mlmodel
inMLModelFit
tomodel
in.MachineShop
. - Move slot
input
inMLModel
to.MachineShop
. - Pass
.MachineShop
to thepredict
andvarimp
slot functions ofMLModel
.
- Add
MachineShop 3.4.3
Version Updates
3.4.3
- Fix
TypeError
independence()
with numeric dummy variables from recipes. - Prep
ModelRecipe
withretain = TRUE
for recipe steps that are skipped, for example, when test datasets are created. - Add generalized area under performance curves to
auc()
,pr_auc()
, androc_auc()
for multiclass factor responses.
MachineShop 3.4.2
Version Updates
3.4.2
- Add argument
select
torfe()
. - Fix object
perf_stats
not found inoptim()
.
MachineShop 3.4.1
Version Updates
3.4.1
- Add argument
conf
toset_optim_bayes()
. - Enable global grid expansion and tuning of
StackedModel
andSuperModel
inModelSpecification()
.
3.4.0
- Fixes
- Enable prediction with survival times of 0.
- Implement class
SelectedModelSpecification
. - Internal changes
- Deprecate classes
ModeledInput
,ModeledFrame
, andModeledRecipe
. - Remove unused class
TunedModeledRecipe
.
- Deprecate classes
- Expire deprecations
- Remove argument
fixed
fromTunedModel()
. - Remove
Grid()
.
- Remove argument
- Rename
rpp()
toppr()
. - Replace
ModeledInput()
withModelSpecification()
. - Require R >= 4.0.0.
- Use Olden algorithm for
NNetModel
model-specific variable importance.
MachineShop 3.3.0
Version Updates
3.3.0
- Add argument
.type
with options"glance"
and"tidy"
tosummary.MLModelFit()
. - Add case components data (stratification and grouping variables) to
print.Resample()
. - Add class and methods for
ModelSpecification
. - Add training parameters set functions
set_monitor()
: monitoring of resampling and optimizationset_optim_bayes()
: Bayesian optimization with a Gaussian process modelset_optim_bfgs()
: low-memory quasi-Newton BFGS optimizationset_optim_grid()
: exhaustive and random grid searchesset_optim_method()
: user-defined optimization functionsset_optim_pso()
: particle swarm optimizationset_optim_sann()
: simulated annealing
- Add
performance()
method forMLModel
to replicate the previous behavior ofsummary.MLModel()
. - Add
performance()
,plot()
, andsummary()
methods forTrainingStep
. - Add support for unordered plots of
Resample
performances. - Changes to argument
type
ofpredict()
.- Add option
"default"
for model-specific default predictions. - Add option
"numeric"
for numeric predictions. - Change option
"prob"
to be for probabilities between 0 and 1.
- Add option
- Change
confusion()
default behavior to convert factor probabilities to levels. - Rename argument
control
toobject
in set functions. - Rename argument
f
tofun
inroc_index()
. - Return a
ListOf
training step summaries fromsummary.MLModel()
. - Return a
TrainingStep
object fromrfe()
. - Support tibble-convertible objects as arguments to
expand_params()
. - Internal changes
- Add class
EnsembleModel
. - Add classes
MLOptimization
,GridSearch
,NullOptimization
,RandomGridSearch
, andSequentialOptimization
. - Add class
NullControl
. - Add slot
control
toPerformanceCurve
. - Add slot
method
toTrainingStep
. - Add slot
optim
toTrainingParams
. - Add slot
params
toMLInput
. - Inherit class
SelectedModel
fromEnsembleModel
. - Inherit class
StackedModel
fromEnsembleModel
. - Inherit class
SuperModel
fromStackedModel
. - Rename slot
case_comps
tovars
inResample
. - Rename slot
grid
tolog
inTrainingStep
.
- Add class
- Fixes
- error predicting single factor response in
GLMModel
- 'size(x@performance, 3)' error in
print.TrainingStep()
- 'Unmatched tuning parameters' error in
TunedModel()
- error predicting single factor response in
3.2.1
- Fix 'data' argument of wrong type error in
terms.formula()
. - Require >= 3.1.0 version of cli package.