-
Notifications
You must be signed in to change notification settings - Fork 31
custom plotting tutorial
joshuailevy edited this page Jul 21, 2022
·
3 revisions
Once you've been sampling wastewater for long enough, you might find that the standard freyja plot
function isn't sufficiently flexible to build more complicated and/or curated plots of variant/lineage dynamics. In this tutorial, we'll talk a little bit about how to customize plots as you see fit, using the Freyja Python library.
- Load in necessary packages and prepare an aggregated output file using the
python freyja aggregate
command. Note: this will be in tsv (tab separated value) format.
import pandas as pd
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.dates as mdates
# make text illustrator
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
agg_df = pd.read_csv('your-aggregated-data.tsv', skipinitialspace=True, sep='\t',index_col=0)
## filter samples by coverage (generally 60-70 is decent cutoff, but can vary across samples)
agg_df = agg_df[agg_df['coverage']>70.0]
- Read the aggregated data in, and convert to a more friendly format using the
python prepLineageDict()
andpython prepSummarizedDict()
functions:
from freyja.utils import prepLineageDict, prepSummaryDict
agg_df = prepSummaryDict(agg_df)
agg_df = prepLineageDict(agg_df)
# specify which sort of data you're looking to get out
lineages=True # False = variant summarized, True = lineage specific
if lineages:
## lineage focused analyses
queryType = 'linDict'
else:
## analyses summarized by variant
queryType = 'summarized'
- Add in dates. Then convert to a single dataframe ordered by date.
# load time metadata
times_df = pd.read_csv(times, skipinitialspace=True,
index_col=0)
times_df['sample_collection_datetime'] = \
pd.to_datetime(times_df['sample_collection_datetime'])
# build a dataframe
df_abundances = pd.DataFrame()
for i, sampLabel in enumerate(agg_df.index):
dat = agg_df.loc[sampLabel, queryType]
if isinstance(dat, list):
df_abundances = df_abundances.append(
pd.Series(agg_df.loc[sampLabel, queryType][0],
name=times_df.loc[sampLabel,
'sample_collection_datetime']))
else:
df_abundances = df_abundances.append(
pd.Series(agg_df.loc[sampLabel, queryType],
name=times_df.loc[sampLabel,
'sample_collection_datetime']))
# fill nans, group data by the appropriate interval
interval = 'MS' # 'MS' is monthly, 'D' is daily
df_abundances = df_abundances.fillna(0)
df_abundances = df_abundances.groupby(pd.Grouper(freq=interval)).mean()
Optional: Add in custom groupings as desired. For example, if we want to group all AY lineages, we can adjust
df_abundances['AY.X'] = df_abundances.loc[:,df_abundances.columns.str.startswith('AY.')].sum(axis=1)
df_abundances = df_abundances.drop(columns= df_abundances.columns[df_abundances.columns.str.startswith('AY.') & ~(df_abundances.columns=='AY.X')])
For more complex groupings, relationships between lineages are made available via cov-lineages here and can be grouped accordingly.
- Build your custom plot, using either an existing colormap (like tab20 in matplotlib) or a custom colormap (see colors0 in the example below).
windowSize = 14 # set window size for rolling average if using daily interval
# replace "example" with whatever you'd like to call the output file
outputFn = 'example_' + queryType + '.pdf'
colors0 = []# if empty, use cmap
#example for user specified colors
# colors0 = [#DAF7A6,#FFC300,#FF5733,#1B4F72,#808B96,#45B39D]
cmap = plt.cm.tab20
fig, ax = plt.subplots()
if interval == 'D':
df_abundances = df_abundances.rolling(windowSize, center=True,
min_periods=0).mean()
if len(colors0) == 0:
ax.stackplot(df_abundances.index, df_abundances.to_numpy().T,
labels=df_abundances.columns, cmap=cmap)
else:
ax.stackplot(df_abundances.index, df_abundances.to_numpy().T,
labels=df_abundances.columns, colors=colors0)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 4})
ax.set_ylabel('Variant Prevalence')
ax.set_ylim([0, 1])
plt.setp(ax.get_xticklabels(), rotation=90)
fig.tight_layout()
plt.savefig(outputFn)
plt.close()
elif interval == 'MS':
for i in range(0, df_abundances.shape[1]):
label = df_abundances.columns[i]
# color = colorDict[label]
if len(colors0) == 0:
#this should work for up to 20 colors
ax.bar(df_abundances.index, df_abundances.iloc[:, i],
width=14, bottom=df_abundances.iloc[:, 0:i].sum(axis=1),
label=label, color=cmap(i / 20.))
else:
ax.bar(df_abundances.index, df_abundances.iloc[:, i],
width=14, bottom=df_abundances.iloc[:, 0:i].sum(axis=1),
label=label, color=colors0[i])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 4})
ax.set_ylabel('Variant Prevalence')
locator = mdates.MonthLocator(bymonthday=1)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(mdates.ConciseDateFormatter(locator))
ax.set_ylim([0, 1])
ax.set_aspect(150)
fig.tight_layout()
plt.savefig(outputFn)
plt.close()