Skip to content

PSRLW_PSRLD_PSRLQ

Henk-Jan Lebbink edited this page Jun 6, 2018 · 13 revisions

PSRLW / PSRLD / PSRLQ — Shift Packed Data Right Logical

Opcode/ Instruction Op/ En 64/32 bit Mode Support CPUID Feature Flag Description
NP 0F D1 /r1 PSRLW mm, mm/m64 A V/V MMX Shift words in mm right by amount specified in mm/m64 while shifting in 0s.
66 0F D1 /r PSRLW xmm1, xmm2/m128 A V/V SSE2 Shift words in xmm1 right by amount specified in xmm2/m128 while shifting in 0s.
NP 0F 71 /2 ib1 PSRLW mm, imm8 B V/V MMX Shift words in mm right by imm8 while shifting in 0s.
66 0F 71 /2 ib PSRLW xmm1, imm8 B V/V SSE2 Shift words in xmm1 right by imm8 while shifting in 0s.
NP 0F D2 /r1 PSRLD mm, mm/m64 A V/V MMX Shift doublewords in mm right by amount specified in mm/m64 while shifting in 0s.
66 0F D2 /r PSRLD xmm1, xmm2/m128 A V/V SSE2 Shift doublewords in xmm1 right by amount specified in xmm2 /m128 while shifting in 0s.
NP 0F 72 /2 ib1 PSRLD mm, imm8 B V/V MMX Shift doublewords in mm right by imm8 while shifting in 0s.
66 0F 72 /2 ib PSRLD xmm1, imm8 B V/V SSE2 Shift doublewords in xmm1 right by imm8 while shifting in 0s.
NP 0F D3 /r1 PSRLQ mm, mm/m64 A V/V MMX Shift mm right by amount specified in mm/m64 while shifting in 0s.
66 0F D3 /r PSRLQ xmm1, xmm2/m128 A V/V SSE2 Shift quadwords in xmm1 right by amount specified in xmm2/m128 while shifting in 0s.
NP 0F 73 /2 ib1 PSRLQ mm, imm8 B V/V MMX Shift mm right by imm8 while shifting in 0s.
66 0F 73 /2 ib PSRLQ xmm1, imm8 B V/V SSE2 Shift quadwords in xmm1 right by imm8 while shifting in 0s.
VEX.NDS.128.66.0F.WIG D1 /r VPSRLW xmm1, xmm2, xmm3/m128 C V/V AVX Shift words in xmm2 right by amount specified in xmm3/m128 while shifting in 0s.
VEX.NDD.128.66.0F.WIG 71 /2 ib VPSRLW xmm1, xmm2, imm8 D V/V AVX Shift words in xmm2 right by imm8 while shifting in 0s.
VEX.NDS.128.66.0F.WIG D2 /r VPSRLD xmm1, xmm2, xmm3/m128 C V/V AVX Shift doublewords in xmm2 right by amount specified in xmm3/m128 while shifting in 0s.
VEX.NDD.128.66.0F.WIG 72 /2 ib VPSRLD xmm1, xmm2, imm8 D V/V AVX Shift doublewords in xmm2 right by imm8 while shifting in 0s.
VEX.NDS.128.66.0F.WIG D3 /r VPSRLQ xmm1, xmm2, xmm3/m128 C V/V AVX Shift quadwords in xmm2 right by amount specified in xmm3/m128 while shifting in 0s.
VEX.NDD.128.66.0F.WIG 73 /2 ib VPSRLQ xmm1, xmm2, imm8 D V/V AVX Shift quadwords in xmm2 right by imm8 while shifting in 0s.
VEX.NDS.256.66.0F.WIG D1 /r VPSRLW ymm1, ymm2, xmm3/m128 C V/V AVX2 Shift words in ymm2 right by amount specified in xmm3/m128 while shifting in 0s.
VEX.NDD.256.66.0F.WIG 71 /2 ib VPSRLW ymm1, ymm2, imm8 D V/V AVX2 Shift words in ymm2 right by imm8 while shifting in 0s.
VEX.NDS.256.66.0F.WIG D2 /r VPSRLD ymm1, ymm2, xmm3/m128 C V/V AVX2 Shift doublewords in ymm2 right by amount specified in xmm3/m128 while shifting in 0s.
VEX.NDD.256.66.0F.WIG 72 /2 ib VPSRLD ymm1, ymm2, imm8 D V/V AVX2 Shift doublewords in ymm2 right by imm8 while shifting in 0s.
VEX.NDS.256.66.0F.WIG D3 /r VPSRLQ ymm1, ymm2, xmm3/m128 C V/V AVX2 Shift quadwords in ymm2 right by amount specified in xmm3/m128 while shifting in 0s.
VEX.NDD.256.66.0F.WIG 73 /2 ib VPSRLQ ymm1, ymm2, imm8 D V/V AVX2 Shift quadwords in ymm2 right by imm8 while shifting in 0s.
EVEX.NDS.128.66.0F.WIG D1 /r VPSRLW xmm1 {k1}{z}, xmm2, xmm3/m128 G V/V AVX512VL AVX512BW Shift words in xmm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDS.256.66.0F.WIG D1 /r VPSRLW ymm1 {k1}{z}, ymm2, xmm3/m128 G V/V AVX512VL AVX512BW Shift words in ymm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDS.512.66.0F.WIG D1 /r VPSRLW zmm1 {k1}{z}, zmm2, xmm3/m128 G V/V AVX512BW Shift words in zmm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDD.128.66.0F.WIG 71 /2 ib VPSRLW xmm1 {k1}{z}, xmm2/m128, imm8 E V/V AVX512VL AVX512BW Shift words in xmm2/m128 right by imm8 while shifting in 0s using writemask k1.
EVEX.NDD.256.66.0F.WIG 71 /2 ib VPSRLW ymm1 {k1}{z}, ymm2/m256, imm8 E V/V AVX512VL AVX512BW Shift words in ymm2/m256 right by imm8 while shifting in 0s using writemask k1.
EVEX.NDD.512.66.0F.WIG 71 /2 ib VPSRLW zmm1 {k1}{z}, zmm2/m512, imm8 E V/V AVX512BW Shift words in zmm2/m512 right by imm8 while shifting in 0s using writemask k1.
EVEX.NDS.128.66.0F.W0 D2 /r VPSRLD xmm1 {k1}{z}, xmm2, xmm3/m128 G V/V AVX512VL AVX512F Shift doublewords in xmm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDS.256.66.0F.W0 D2 /r VPSRLD ymm1 {k1}{z}, ymm2, xmm3/m128 G V/V AVX512VL AVX512F Shift doublewords in ymm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDS.512.66.0F.W0 D2 /r VPSRLD zmm1 {k1}{z}, zmm2, xmm3/m128 G V/V AVX512F Shift doublewords in zmm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDD.128.66.0F.W0 72 /2 ib VPSRLD xmm1 {k1}{z}, xmm2/m128/m32bcst, imm8 F V/V AVX512VL AVX512F Shift doublewords in xmm2/m128/m32bcst right by imm8 while shifting in 0s using writemask k1.
EVEX.NDD.256.66.0F.W0 72 /2 ib VPSRLD ymm1 {k1}{z}, ymm2/m256/m32bcst, imm8 F V/V AVX512VL AVX512F Shift doublewords in ymm2/m256/m32bcst right by imm8 while shifting in 0s using writemask k1.
EVEX.NDD.512.66.0F.W0 72 /2 ib VPSRLD zmm1 {k1}{z}, zmm2/m512/m32bcst, imm8 F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst right by imm8 while shifting in 0s using writemask k1.
EVEX.NDS.128.66.0F.W1 D3 /r VPSRLQ xmm1 {k1}{z}, xmm2, xmm3/m128 G V/V AVX512VL AVX512F Shift quadwords in xmm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDS.256.66.0F.W1 D3 /r VPSRLQ ymm1 {k1}{z}, ymm2, xmm3/m128 G V/V AVX512VL AVX512F Shift quadwords in ymm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDS.512.66.0F.W1 D3 /r VPSRLQ zmm1 {k1}{z}, zmm2, xmm3/m128 G V/V AVX512F Shift quadwords in zmm2 right by amount specified in xmm3/m128 while shifting in 0s using writemask k1.
EVEX.NDD.128.66.0F.W1 73 /2 ib VPSRLQ xmm1 {k1}{z}, xmm2/m128/m64bcst, imm8 F V/V AVX512VL AVX512F Shift quadwords in xmm2/m128/m64bcst right by imm8 while shifting in 0s using writemask k1.
EVEX.NDD.256.66.0F.W1 73 /2 ib VPSRLQ ymm1 {k1}{z}, ymm2/m256/m64bcst, imm8 F V/V AVX512VL AVX512F Shift quadwords in ymm2/m256/m64bcst right by imm8 while shifting in 0s using writemask k1.
EVEX.NDD.512.66.0F.W1 73 /2 ib VPSRLQ zmm1 {k1}{z}, zmm2/m512/m64bcst, imm8 F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst right by imm8 while shifting in 0s using writemask k1.
  1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA
B NA ModRM:r/m (r, w) imm8 NA NA
C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA
E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
G Mem128 ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s. Figure 4-19 gives an example of shifting words in a 64-bit operand.

Note that only the low 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift DEST Shift Right with Zero Extension Post-Shift DEST X3 X2 X1 X0 X3 >> COUNT X2 >> COUNT X1 >> COUNT X0 >> COUNT
X3 X2 X1 X0
X2 >> COUNT X1 >> COUNT X0 >> COUNT

Figure 4-19. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand; and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE instruction 64-bit operand: The destination operand is an MMX technology register; the count operand can be either an MMX technology register or an 64-bit memory location. 128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme- diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.

EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a memory location (the variable count version). For the immediate count version, the source operand (the second operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.

Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2, or EVEX.128.66.0F 71-73 /2), VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRLW (with 64-bit operand)

    IF (COUNT > 15)
    THEN 
        DEST[64:0] ← 0000000000000000H
    ELSE
        DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
        (* Repeat shift operation for 2nd and 3rd words *)
        DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);
    FI;

PSRLD (with 64-bit operand)

    IF (COUNT > 31)
    THEN 
        DEST[64:0] ← 0000000000000000H
    ELSE
        DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
        DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);
    FI;

PSRLQ (with 64-bit operand)

    IF (COUNT > 63)
    THEN 
        DEST[64:0] ← 0000000000000000H
    ELSE
        DESTZeroExtend(DEST >> COUNT);
    FI;
LOGICAL_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 31)
THEN
    DEST[31:0] ← 0
ELSE
    DEST[31:0] ← ZeroExtend(SRC[31:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 63)
THEN
    DEST[63:0] ← 0
ELSE
    DEST[63:0] ← ZeroExtend(SRC[63:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 15)
THEN
    DEST[255:0] ←0
ELSE
    DEST[15:0] ←ZeroExtend(SRC[15:0] >> COUNT);
    (* Repeat shift operation for 2nd through 15th words *)
    DEST[255:240] ←ZeroExtend(SRC[255:240] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 15)
THEN
    DEST[127:0] ←00000000000000000000000000000000H
ELSE
    DEST[15:0] ←ZeroExtend(SRC[15:0] >> COUNT);
    (* Repeat shift operation for 2nd through 7th words *)
    DEST[127:112] ←ZeroExtend(SRC[127:112] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 31)
THEN
    DEST[255:0] ←0
ELSE
    DEST[31:0] ←ZeroExtend(SRC[31:0] >> COUNT);
    (* Repeat shift operation for 2nd through 3rd words *)
    DEST[255:224] ←ZeroExtend(SRC[255:224] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 31)
THEN
    DEST[127:0] ←00000000000000000000000000000000H
ELSE
    DEST[31:0] ←ZeroExtend(SRC[31:0] >> COUNT);
    (* Repeat shift operation for 2nd through 3rd words *)
    DEST[127:96] ←ZeroExtend(SRC[127:96] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 63)
THEN
    DEST[255:0] ←0
ELSE
    DEST[63:0] ←ZeroExtend(SRC[63:0] >> COUNT);
    DEST[127:64] ←ZeroExtend(SRC[127:64] >> COUNT);
    DEST[191:128] ←ZeroExtend(SRC[191:128] >> COUNT);
    DEST[255:192] ←ZeroExtend(SRC[255:192] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNTCOUNT_SRC[63:0];
IF (COUNT > 63)
THEN
    DEST[127:0] ←00000000000000000000000000000000H
ELSE
    DEST[63:0] ←ZeroExtend(SRC[63:0] >> COUNT);
    DEST[127:64] ←ZeroExtend(SRC[127:64] >> COUNT);
FI;

VPSRLW (EVEX versions, xmm/m128)

(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
    TMP_DEST[127:0] ← LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
    TMP_DEST[511:256] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j0 TO KL-1
    ij * 16
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] ← TMP_DEST[i+15:i]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+15:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking 
                    DEST[i+15:i] = 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VPSRLW (EVEX versions, imm8)

(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
    TMP_DEST[127:0] ← LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
    TMP_DEST[511:256] ← LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)
FI;
FOR j0 TO KL-1
    ij * 16
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] ← TMP_DEST[i+15:i]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+15:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking 
                    DEST[i+15:i] = 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VPSRLW (ymm, ymm, xmm/m128) - VEX.256 encoding

DEST[255:0] ←LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] ←0;

VPSRLW (ymm, imm8) - VEX.256 encoding

DEST[255:0] ←LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] ←0;

VPSRLW (xmm, xmm, xmm/m128) - VEX.128 encoding

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] ←0

VPSRLW (xmm, imm8) - VEX.128 encoding

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] ←0

PSRLW (xmm, xmm, xmm/m128)

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLW (xmm, imm8)

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLD (EVEX versions, xmm/m128)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
    TMP_DEST[127:0] ← LOGICAL_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
    TMP_DEST[511:256] ← LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j0 TO KL-1
    ij * 32
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i] ← TMP_DEST[i+31:i]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking 
                    DEST[i+31:i] ← 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VPSRLD (EVEX versions, imm8)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j0 TO KL-1
    ij * 32
    IF k1[j] OR *no writemask* THEN
            IF (EVEX.b = 1) AND (SRC1 *is memory*)
                THEN DEST[i+31:i] ← LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
                ELSE DEST[i+31:i] ← LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)
            FI;
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking 
                    DEST[i+31:i] ← 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VPSRLD (ymm, ymm, xmm/m128) - VEX.256 encoding

DEST[255:0] ←LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] ←0;

VPSRLD (ymm, imm8) - VEX.256 encoding

DEST[255:0] ←LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] ←0;

VPSRLD (xmm, xmm, xmm/m128) - VEX.128 encoding

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] ←0

VPSRLD (xmm, imm8) - VEX.128 encoding

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] ←0

PSRLD (xmm, xmm, xmm/m128)

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLD (xmm, imm8)

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLQ (EVEX versions, xmm/m128)

(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
IF VL = 128
    TMP_DEST[127:0] ← LOGICAL_RIGHT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
    TMP_DEST[255:0] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
    TMP_DEST[511:256] ← LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j0 TO KL-1
    ij * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+63:i] ← TMP_DEST[i+63:i]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+63:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking 
                    DEST[i+63:i] ← 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VPSRLQ (EVEX versions, imm8)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j0 TO KL-1
    ij * 64
    IF k1[j] OR *no writemask* THEN
            IF (EVEX.b = 1) AND (SRC1 *is memory*)
                THEN DEST[i+63:i] ← LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
                ELSE DEST[i+63:i] ← LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)
            FI;
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+63:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking 
                    DEST[i+63:i] ← 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

VPSRLQ (ymm, ymm, xmm/m128) - VEX.256 encoding

DEST[255:0] ←LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] ←0;

VPSRLQ (ymm, imm8) - VEX.256 encoding

DEST[255:0] ←LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] ←0;

VPSRLQ (xmm, xmm, xmm/m128) - VEX.128 encoding

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] ←0

VPSRLQ (xmm, imm8) - VEX.128 encoding

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] ←0

PSRLQ (xmm, xmm, xmm/m128)

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLQ (xmm, imm8)

DEST[127:0] ←LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents

VPSRLD __m512i _mm512_srli_epi32(__m512i a, unsigned int imm);
VPSRLD __m512i _mm512_mask_srli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m512i _mm512_maskz_srli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m256i _mm256_mask_srli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m256i _mm256_maskz_srli_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m128i _mm_mask_srli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m128i _mm_maskz_srli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m512i _mm512_srl_epi32(__m512i a, __m128i cnt);
VPSRLD __m512i _mm512_mask_srl_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m512i _mm512_maskz_srl_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m256i _mm256_mask_srl_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m256i _mm256_maskz_srl_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m128i _mm_mask_srl_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLD __m128i _mm_maskz_srl_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m512i _mm512_srli_epi64(__m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m256i _mm256_mask_srli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m256i _mm256_maskz_srli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m128i _mm_mask_srli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m128i _mm_maskz_srli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m512i _mm512_srl_epi64(__m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m256i _mm256_mask_srl_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m256i _mm256_maskz_srl_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m128i _mm_mask_srl_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m128i _mm_maskz_srl_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m512i _mm512_srli_epi16(__m512i a, unsigned int imm);
VPSRLW __m512i _mm512_mask_srli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m512i _mm512_maskz_srli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m256i _mm256_mask_srli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m256i _mm256_maskz_srli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m128i _mm_mask_srli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m128i _mm_maskz_srli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m512i _mm512_srl_epi16(__m512i a, __m128i cnt);
VPSRLW __m512i _mm512_mask_srl_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m512i _mm512_maskz_srl_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m256i _mm256_mask_srl_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSRLW __m256i _mm256_maskz_srl_epi16( __mmask8 k, __mmask16 a, __m128i cnt);
VPSRLW __m128i _mm_mask_srl_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m128i _mm_maskz_srl_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSRLW:__m64 _mm_srli_pi16(__m64 m, int  count)
PSRLW:__m64 _mm_srl_pi16 (__m64 m, __m64 count)
(V)PSRLW:__m128i _mm_srli_epi16 (__m128i m, int count)
(V)PSRLW:__m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW:__m256i _mm256_srli_epi16 (__m256i m, int count)
VPSRLW:__m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD:__m64 _mm_srli_pi32 (__m64 m, int  count)
PSRLD:__m64 _mm_srl_pi32 (__m64 m, __m64 count)
(V)PSRLD:__m128i _mm_srli_epi32 (__m128i m, int  count)
(V)PSRLD:__m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD:__m256i _mm256_srli_epi32 (__m256i m, int count)
VPSRLD:__m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ:__m64 _mm_srli_si64 (__m64 m, int  count)
PSRLQ:__m64 _mm_srl_si64 (__m64 m, __m64 count)
(V)PSRLQ:__m128i _mm_srli_epi64 (__m128i m, int  count)
(V)PSRLQ:__m128i _mm_srl_epi64 (__m128i m, __m128i count)
VPSRLQ:__m256i _mm256_srli_epi64 (__m256i m, int count)
VPSRLQ:__m256i _mm256_srl_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

VEX-encoded instructions: Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4. Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSRLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSRLD/Q: Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb. Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.


Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018

Clone this wiki locally