-
Notifications
You must be signed in to change notification settings - Fork 98
CVTPS2PD
Intel Architecture Software Developer's Manual (July 2017)
CVTPS2PD - Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
NP 0F 5A /r CVTPS2PD xmm1, xmm2/m64 | RM | V/V | SSE2 | Convert two packed single-precision floating-point values in xmm2/m64 to two packed double-precision floating-point values in xmm1. |
VEX.128.0F.WIG 5A /r VCVTPS2PD xmm1, xmm2/m64 | RM | V/V | AVX | Convert two packed single-precision floating-point values in xmm2/m64 to two packed double-precision floating-point values in xmm1. |
VEX.256.0F.WIG 5A /r VCVTPS2PD ymm1, xmm2/m128 | RM | V/V | AVX | Convert four packed single-precision floating-point values in xmm2/m128 to four packed double-precision floating- point values in ymm1. |
EVEX.128.0F.W0 5A /r VCVTPS2PD xmm1 {k1}{z}, xmm2/m64/m32bcst | HV | V/V | AVX512VL AVX512F | Convert two packed single-precision floating-point values in xmm2/m64/m32bcst to packed double-precision floating- point values in xmm1 with writemask k1. |
EVEX.256.0F.W0 5A /r VCVTPS2PD ymm1 {k1}{z}, xmm2/m128/m32bcst | HV | V/V | AVX512VL | Convert four packed single-precision floating-point values in xmm2/m128/m32bcst to packed double-precision floating-point values in ymm1 with writemask k1. |
EVEX.512.0F.W0 5A /r VCVTPS2PD zmm1 {k1}{z}, ymm2/m256/m32bcst{sae} | HV | V/V | AVX512F | Convert eight packed single-precision floating-point values in ymm2/m256/b32bcst to eight packed double-precision floating-point values in zmm1 with writemask k1. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
HV | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Converts two, four or eight packed single-precision floating-point values in the source operand (second operand) to two, four or eight packed double-precision floating-point values in the destination operand (first operand).
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register, a 256/128/64-bit memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a YMM register. Bits (MAX_VL-1:256) of the corresponding destination ZMM register are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operand is a XMM register. The upper Bits (MAX_VL-1:128) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operand is an XMM register. The upper Bits (MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
SRC X3 X2 X1 X0 DEST X3 X2 X1 X0 | |||||||
X3 | X2 | X1 | X0 | ||||
X3 | X2 | X1 | X0 | ||||
Figure 3-14. CVTPS2PD (VEX.256 encoded version)
VCVTPS2PD (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
k ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ←
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+63:i] ← 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] ← 0
VCVTPS2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
k ← j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i] ←
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE
DEST[i+63:i] ←
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+63:i] ← 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] ← 0
VCVTPS2PD (VEX.256 encoded version)
DEST[63:0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAX_VL-1:256] ← 0
VCVTPS2PD (VEX.128 encoded version)
DEST[63:0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] ← 0
CVTPS2PD (128-bit Legacy SSE version)
DEST[63:0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] (unmodified)
VCVTPS2PD __m512d _mm512_cvtps_pd( __m256 a);
VCVTPS2PD __m512d _mm512_mask_cvtps_pd( __m512d s, __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_maskz_cvtps_pd( __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_cvt_roundps_pd( __m256 a, int sae);
VCVTPS2PD __m512d _mm512_mask_cvt_roundps_pd( __m512d s, __mmask8 k, __m256 a, int sae);
VCVTPS2PD __m512d _mm512_maskz_cvt_roundps_pd( __mmask8 k, __m256 a, int sae);
VCVTPS2PD __m256d _mm256_mask_cvtps_pd( __m256d s, __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_maskz_cvtps_pd( __mmask8 k, __m128a);
VCVTPS2PD __m128d _mm_mask_cvtps_pd( __m128d s, __mmask8 k, __m128 a);
VCVTPS2PD __m128d _mm_maskz_cvtps_pd( __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_cvtps_pd (__m128 a)
CVTPS2PD __m128d _mm_cvtps_pd (__m128 a)
Invalid, Denormal
VEX-encoded instructions, see Exceptions Type 3;
EVEX-encoded instructions, see Exceptions Type E3. #UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.