Skip to content

Commit

Permalink
deploy: 5d37bbd
Browse files Browse the repository at this point in the history
  • Loading branch information
mellowcroc committed Jun 11, 2024
1 parent 33bf9fc commit 7dfbac9
Show file tree
Hide file tree
Showing 5 changed files with 14 additions and 14 deletions.
4 changes: 2 additions & 2 deletions cairo/memory.html
Original file line number Diff line number Diff line change
Expand Up @@ -231,10 +231,10 @@ <h2 id="inserting-the-public-memory-in-the-memory"><a class="header" href="#inse
<p>This means two things:</p>
<ol>
<li>the nominator of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> will contain <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span> in the first <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span> iterations (so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span></span></span></span></span></span></span></span></span></span></span>). Furthermore, these will not be cancelled by any values in the denominator (as <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> is supposedly using actual accesses to the public memory)</li>
<li>the denominator of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> will contain <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2247em;vertical-align:-0.4747em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;"></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2253em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mopen mtight">[[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mclose mtight">]]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4747em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0106em;vertical-align:-0.2587em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-2.4413em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2587em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6887em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight"></span></span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal">i</span><span class="mclose">])]</span></span></span></span>, and these values won’t be canceled by values in the nominator either</li>
<li>the denominator of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> will contain <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2247em;vertical-align:-0.4747em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;"></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2253em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mopen mtight">[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mclose mtight">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4747em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0106em;vertical-align:-0.2587em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-2.4413em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2587em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6887em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight"></span></span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal">i</span><span class="mclose">])]</span></span></span></span>, and these values won’t be canceled by values in the nominator either</li>
</ol>
<p>As such, the final value of the accumulator should look like this if the prover followed our directions:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.6868em;vertical-align:-1.1607em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5261em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;"></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2253em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mopen mtight">[[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mclose mtight">]]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4747em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7337em;"><span style="top:-2.4231em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span><span style="top:-3.0448em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2769em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6147em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight"></span></span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal">i</span><span class="mclose">])]</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1607em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p><span class="katex-display"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.6868em;vertical-align:-1.1607em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5261em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;"></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2253em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mopen mtight">[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mclose mtight">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4747em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7337em;"><span style="top:-2.4231em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span><span style="top:-3.0448em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2769em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6147em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight"></span></span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord mathnormal">i</span><span class="mclose">])]</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.1607em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p>which we can enforce (as the verifier) with a boundary constraint. </p>
<p>Section 9.8 of the Cairo paper writes exactly that:</p>
<p><img src="https://hackmd.io/_uploads/HkUiHYcV6.png" alt="Screenshot 2023-11-21 at 11.31.39 AM" /></p>
Expand Down
Loading

0 comments on commit 7dfbac9

Please sign in to comment.