Skip to content

[CVPR2024] Efficient Dataset Distillation via Minimax Diffusion

Notifications You must be signed in to change notification settings

zhengyu-su/MinimaxDiffusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Efficient Dataset Distillation via Minimax Diffusion

Official implementation of "Efficient Dataset Distillation via Minimax Diffusion".

News

  • MinimaxDiffusion is accepted by CVPR2024!
  • We extend MinimaxDiffusion to the full ImageNet-1K dataset and achieves state-of-the-art results!

Highlights ✨

  • MinimaxDiffusion only requires 1 hour to finish the distillation process of a 10-class ImageNet subset, including the fine-tuning and image generation processes.
  • The efficient design of MinimaxDiffusion makes it possible to conduct practical distillation for surrogate datasets with larger IPC and resolution.
  • MinimaxDiffusion achieves state-of-the-art performance on multiple ImageNet subsets. Especially on the fine-grained ImageWoof, it surpasses second-best DD method by 8.1% under the 100-IPC setting.

Getting Started

Download the repo:

git clone https://github.com/vimar-gu/MinimaxDiffusion.git
cd MinimaxDiffusion

Set up the environment:

conda create -n diff python=3.8
conda activate diff
pip install -r requirements.txt

Prepare the pre-trained DiT model:

python download.py

Running Commands

You can simply run the prepared run.sh to reproduce the ImageWoof experiment in the paper.

sh run.sh

It contains the following steps:

Model fine-tuning

torchrun --nnode=1 --master_port=25678 train_dit.py --model DiT-XL/2 \
     --data-path /data/datasets/ImageNet/train/ --ckpt pretrained_models/DiT-XL-2-256x256.pt \
     --global-batch-size 8 --tag minimax --ckpt-every 12000 --log-every 1500 --epochs 8 \
     --condense --finetune-ipc -1 --results-dir ../logs/run-0 --spec woof

Image generation

python sample.py --model DiT-XL/2 --image-size 256 --ckpt ../logs/run-0/000-DiT-XL-2-minimax/checkpoints/0012000.pt \
    --save-dir ../results/dit-distillation/imagenet-10-1000-minimax --spec woof

Validation

python train.py -d imagenet --imagenet_dir ../results/dit-distillation/imagenet-10-1000-minimax /data/datasets/ImageNet/ \
    -n resnet_ap --nclass 10 --norm_type instance --ipc 100 --tag test --slct_type random --spec woof

There are two directories in the validation command. The first one refers to the data for training, while the second one for testing. If you want to validate the performance of original data, run:

python train.py -d imagenet --imagenet_dir /data/datasets/ImageNet/ \
    -n resnet_ap --nclass 10 --norm_type instance --ipc 100 --tag test --slct_type random --spec woof

Results

Performance comparison with state-of-the-art methods on ImageWoof. We provide example generated images here to reproduce the results.

We further extend MinimaxDiffusion to the full ImageNet-1K dataset. The generated 50-IPC images can be found in google drive. With a better validation protocol provided in RDED the generated data achieves the following accuracy:

Acknowledgement

This project is mainly developed based on the following works:

Citation

If you find this work helpful, please cite:

@inproceedings{gu2024efficient,
  title={Efficient Dataset Distillation via Minimax Diffusion},
  author={Gu, Jianyang and Vahidian, Saeed and Kungurtsev, Vyacheslav and Wang, Haonan and Jiang, Wei and You, Yang and Chen, Yiran},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2024}
}

About

[CVPR2024] Efficient Dataset Distillation via Minimax Diffusion

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • Shell 1.7%