-
Notifications
You must be signed in to change notification settings - Fork 33
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
334ec32
commit 57301f2
Showing
3 changed files
with
215 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# Retrieval Augmented Generation (RAG) Evaluation with RAGAS | ||
|
||
This example shows how to use the [ragas](https://docs.ragas.io/) library to evaluate retrieval augmented generation (RAG) models | ||
and visualize the results using Zeno. | ||
|
||
The [rag-eval.ipynb](rag-eval.ipynb) notebook walks through an example on the [ | ||
Financial Opinion Mining and Question Answering (fiqa)](https://sites.google.com/view/fiqa/) dataset. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import dotenv\n", | ||
"from datasets import load_dataset\n", | ||
"import pandas as pd\n", | ||
"from zeno_client import ZenoClient, ZenoMetric\n", | ||
"from ragas.metrics import (\n", | ||
" answer_relevancy,\n", | ||
" faithfulness,\n", | ||
" context_recall,\n", | ||
" context_precision,\n", | ||
")\n", | ||
"from ragas import evaluate\n", | ||
"\n", | ||
"dotenv.load_dotenv(override=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fiqa_eval = load_dataset(\"explodinggradients/fiqa\", \"ragas_eval\")\n", | ||
"fiqa_eval" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"result = evaluate(\n", | ||
" fiqa_eval[\"baseline\"],\n", | ||
" metrics=[\n", | ||
" context_precision,\n", | ||
" faithfulness,\n", | ||
" answer_relevancy,\n", | ||
" context_recall,\n", | ||
" ],\n", | ||
")\n", | ||
"\n", | ||
"result" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = result.to_pandas()\n", | ||
"df.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"client = ZenoClient(os.environ[\"ZENO_API_KEY\"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"project = client.create_project(\n", | ||
" name=\"ragas FICA eval\",\n", | ||
" description=\"Evaluation of RAG model using ragas on FICA dataset\",\n", | ||
" public=True,\n", | ||
" view={\n", | ||
" \"data\": {\n", | ||
" \"type\": \"vstack\",\n", | ||
" \"keys\": {\n", | ||
" \"question\": {\"type\": \"markdown\"},\n", | ||
" \"texts\": {\n", | ||
" \"type\": \"list\",\n", | ||
" \"elements\": {\"type\": \"markdown\"},\n", | ||
" \"border\": True,\n", | ||
" \"pad\": True,\n", | ||
" },\n", | ||
" },\n", | ||
" },\n", | ||
" \"label\": {\n", | ||
" \"type\": \"markdown\",\n", | ||
" },\n", | ||
" \"output\": {\n", | ||
" \"type\": \"vstack\",\n", | ||
" \"keys\": {\n", | ||
" \"answer\": {\"type\": \"markdown\"},\n", | ||
" \"ground_truths\": {\n", | ||
" \"type\": \"list\",\n", | ||
" \"elements\": {\"type\": \"markdown\"},\n", | ||
" \"border\": True,\n", | ||
" \"pad\": True,\n", | ||
" },\n", | ||
" },\n", | ||
" },\n", | ||
" \"size\": \"large\",\n", | ||
" },\n", | ||
" metrics=[\n", | ||
" ZenoMetric(\n", | ||
" name=\"context_precision\", type=\"mean\", columns=[\"context_precision\"]\n", | ||
" ),\n", | ||
" ZenoMetric(name=\"faithfulness\", type=\"mean\", columns=[\"faithfulness\"]),\n", | ||
" ZenoMetric(name=\"answer_relevancy\", type=\"mean\", columns=[\"answer_relevancy\"]),\n", | ||
" ZenoMetric(name=\"context_recall\", type=\"mean\", columns=[\"context_recall\"]),\n", | ||
" ],\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data_df = pd.DataFrame(\n", | ||
" {\n", | ||
" \"data\": df.apply(\n", | ||
" lambda x: {\"question\": x[\"question\"], \"texts\": list(x[\"contexts\"])}, axis=1\n", | ||
" ),\n", | ||
" \"label\": df[\"ground_truths\"].apply(lambda x: \"\\n\".join(x)),\n", | ||
" }\n", | ||
")\n", | ||
"data_df[\"id\"] = data_df.index" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"project.upload_dataset(\n", | ||
" data_df, id_column=\"id\", data_column=\"data\", label_column=\"label\"\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"output_df = df[\n", | ||
" [\n", | ||
" \"context_precision\",\n", | ||
" \"faithfulness\",\n", | ||
" \"answer_relevancy\",\n", | ||
" \"context_recall\",\n", | ||
" ]\n", | ||
"].copy()\n", | ||
"output_df[\"output\"] = df.apply(\n", | ||
" lambda x: {\"answer\": x[\"answer\"], \"ground_truths\": list(x[\"ground_truths\"])}, axis=1\n", | ||
")\n", | ||
"output_df[\"id\"] = output_df.index" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"project.upload_system(\n", | ||
" output_df, name=\"Base System\", id_column=\"id\", output_column=\"output\"\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "zeno-build", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
ragas | ||
python-dotenv | ||
datasets |