Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump stable-baselines3 from 2.2.1 to 2.3.2 #418

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Apr 29, 2024

Bumps stable-baselines3 from 2.2.1 to 2.3.2.

Release notes

Sourced from stable-baselines3's releases.

Stable-Baselines3 v2.3.0: New defaults hyperparameters for DDPG, TD3 and DQN

[!WARNING] Because of weights_only=True, this release breaks loading of policies when using PyTorch 1.13. Please upgrade to PyTorch >= 2.0 or upgrade SB3 version (we reverted the change in SB3 2.3.2)

SB3 Contrib (more algorithms): https://github.com/Stable-Baselines-Team/stable-baselines3-contrib RL Zoo3 (training framework): https://github.com/DLR-RM/rl-baselines3-zoo Stable-Baselines Jax (SBX): https://github.com/araffin/sbx

To upgrade:

pip install stable_baselines3 sb3_contrib --upgrade

or simply (rl zoo depends on SB3 and SB3 contrib):

pip install rl_zoo3 --upgrade

Breaking Changes:

  • The defaults hyperparameters of TD3 and DDPG have been changed to be more consistent with SAC
  # SB3 < 2.3.0 default hyperparameters
  # model = TD3("MlpPolicy", env, train_freq=(1, "episode"), gradient_steps=-1, batch_size=100)
  # SB3 >= 2.3.0:
  model = TD3("MlpPolicy", env, train_freq=1, gradient_steps=1, batch_size=256)

[!NOTE] Two inconsistencies remain: the default network architecture for TD3/DDPG is [400, 300] instead of [256, 256] for SAC (for backward compatibility reasons, see report on the influence of the network size ) and the default learning rate is 1e-3 instead of 3e-4 for SAC (for performance reasons, see W&B report on the influence of the lr )

  • The default learning_starts parameter of DQN have been changed to be consistent with the other offpolicy algorithms
  # SB3 < 2.3.0 default hyperparameters, 50_000 corresponded to Atari defaults hyperparameters
  # model = DQN("MlpPolicy", env, learning_starts=50_000)
  # SB3 >= 2.3.0:
  model = DQN("MlpPolicy", env, learning_starts=100)
  • For safety, torch.load() is now called with weights_only=True when loading torch tensors, policy load() still uses weights_only=False as gymnasium imports are required for it to work
  • When using huggingface_sb3, you will now need to set TRUST_REMOTE_CODE=True when downloading models from the hub, as pickle.load is not safe.

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) from 2.2.1 to 2.3.2.
- [Release notes](https://github.com/DLR-RM/stable-baselines3/releases)
- [Commits](DLR-RM/stable-baselines3@v2.2.1...v2.3.2)

---
updated-dependencies:
- dependency-name: stable-baselines3
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Apr 29, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants