Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Correcting Cramer's V #783

Merged
merged 3 commits into from
Oct 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 53 additions & 49 deletions verticapy/core/vdataframe/_corr.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,37 +165,12 @@ def _aggregate_matrix(
elif method == "cramer":
if columns[1] == columns[0]:
return 1
table_0_1 = f"""
SELECT
{columns[0]},
{columns[1]},
COUNT(*) AS nij
FROM {self}
WHERE {columns[0]} IS NOT NULL
AND {columns[1]} IS NOT NULL
GROUP BY 1, 2"""
table_0 = f"""
SELECT
{columns[0]},
COUNT(*) AS ni
FROM {self}
WHERE {columns[0]} IS NOT NULL
AND {columns[1]} IS NOT NULL
GROUP BY 1"""
table_1 = f"""
SELECT
{columns[1]},
COUNT(*) AS nj
FROM {self}
WHERE {columns[0]} IS NOT NULL
AND {columns[1]} IS NOT NULL
GROUP BY 1"""
n, k, r = _executeSQL(
query=f"""
SELECT /*+LABEL('vDataframe._aggregate_matrix')*/
COUNT(*) AS n,
APPROXIMATE_COUNT_DISTINCT({columns[0]}) AS k,
APPROXIMATE_COUNT_DISTINCT({columns[1]}) AS r
COUNT(DISTINCT {columns[0]}) AS k,
COUNT(DISTINCT {columns[1]}) AS r
FROM {self}
WHERE {columns[0]} IS NOT NULL
AND {columns[1]} IS NOT NULL""",
Expand All @@ -204,20 +179,48 @@ def _aggregate_matrix(
sql_push_ext=self._vars["sql_push_ext"],
symbol=self._vars["symbol"],
)
chi2 = f"""
SELECT /*+LABEL('vDataframe._aggregate_matrix')*/
SUM((nij - ni * nj / {n}) * (nij - ni * nj / {n})
/ ((ni * nj) / {n})) AS chi2
FROM
chi2_sql = f"""
WITH all_categories AS (
SELECT * FROM
(SELECT
*
FROM ({table_0_1}) table_0_1
LEFT JOIN ({table_0}) table_0
ON table_0_1.{columns[0]} = table_0.{columns[0]}) x
LEFT JOIN ({table_1}) table_1
ON x.{columns[1]} = table_1.{columns[1]}"""
result = _executeSQL(
chi2,
DISTINCT {columns[0]}
FROM {self} WHERE {columns[0]} IS NOT NULL) table_0
CROSS JOIN
(SELECT
DISTINCT {columns[1]}
FROM {self} WHERE {columns[1]} IS NOT NULL) table_1
), categories_counts AS (
SELECT
{columns[0]},
{columns[1]},
COUNT(*) AS _nij
FROM {self}
WHERE
{columns[0]} IS NOT NULL
AND {columns[1]} IS NOT NULL
GROUP BY 1, 2
), contingent_table AS (
SELECT
all_categories.{columns[0]},
all_categories.{columns[1]},
COALESCE(_nij, 0) AS _nij
FROM all_categories
LEFT JOIN categories_counts
ON all_categories.{columns[0]} = categories_counts.{columns[0]}
AND all_categories.{columns[1]} = categories_counts.{columns[1]}
), expected_values AS (
SELECT
_nij AS O,
SUM(_nij) OVER(PARTITION BY {columns[0]})
* SUM(_nij) OVER(PARTITION BY {columns[1]})
/ SUM(_nij) OVER () AS E
FROM contingent_table
)
SELECT
SUM((POWER(O - E, 2) / E))
FROM expected_values;"""
chi2 = _executeSQL(
chi2_sql,
title=(
f"Computing the CramerV correlation between {columns[0]} "
f"and {columns[1]} (Chi2 Statistic)."
Expand All @@ -226,13 +229,14 @@ def _aggregate_matrix(
sql_push_ext=self._vars["sql_push_ext"],
symbol=self._vars["symbol"],
)
if min(k - 1, r - 1) == 0:
result = np.nan
else:
result = float(math.sqrt(result / n / min(k - 1, r - 1)))
if result > 1 or result < 0:
result = np.nan
return result
phi2 = chi2 / n
phi2corr = max(0, phi2 - ((k - 1) * (r - 1)) / (n - 1))
rcorr = r - ((r - 1) ** 2) / (n - 1)
kcorr = k - ((k - 1) ** 2) / (n - 1)
div = min((kcorr - 1), (rcorr - 1))
if div == 0:
return np.nan
return np.sqrt(phi2corr / div)
elif method == "kendall":
if columns[1] == columns[0]:
return 1
Expand Down Expand Up @@ -1122,8 +1126,8 @@ def corr_pvalue(
k, r = _executeSQL(
query=f"""
SELECT /*+LABEL('vDataframe.corr_pvalue')*/
APPROXIMATE_COUNT_DISTINCT({column1}) AS k,
APPROXIMATE_COUNT_DISTINCT({column2}) AS r
COUNT(DISTINCT {column1}) AS k,
COUNT(DISTINCT {column2}) AS r
FROM {self}
WHERE {column1} IS NOT NULL
AND {column2} IS NOT NULL""",
Expand Down
16 changes: 8 additions & 8 deletions verticapy/tests/vDataFrame/test_vDF_correlation.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,13 +296,13 @@ def test_vDF_corr(self, titanic_vd):
)
# plt.close("all")
assert result5["survived"][0] == 1.0
assert result5["survived"][1] == pytest.approx(0.3358661117846154, 1e-2)
assert result5["survived"][2] == pytest.approx(0.18608072188932145, 1e-2)
assert result5["pclass"][0] == pytest.approx(0.3358661117846154, 1e-2)
assert result5["survived"][1] == pytest.approx(0.3335779245846321, 1e-2)
assert result5["survived"][2] == pytest.approx(0.1817365402078066, 1e-2)
assert result5["pclass"][0] == pytest.approx(0.3335779245846321, 1e-2)
assert result5["pclass"][1] == 1.0
assert result5["pclass"][2] == pytest.approx(0.27453049870161333, 1e-2)
assert result5["embarked"][0] == pytest.approx(0.18608072188932145, 1e-2)
assert result5["embarked"][1] == pytest.approx(0.27453049870161333, 1e-2)
assert result5["pclass"][2] == pytest.approx(0.27177620037368444, 1e-2)
assert result5["embarked"][0] == pytest.approx(0.1817365402078066, 1e-2)
assert result5["embarked"][1] == pytest.approx(0.27177620037368444, 1e-2)
assert result5["embarked"][2] == 1.0

# testing vDataFrame.corr (method = 'cramer') with focus
Expand All @@ -312,8 +312,8 @@ def test_vDF_corr(self, titanic_vd):
show=False,
)
# plt.close("all")
assert result5_f["survived"][1] == pytest.approx(0.5531019147439457, 1e-2)
assert result5_f["survived"][2] == pytest.approx(0.3358661117846154, 1e-2)
assert result5_f["survived"][1] == pytest.approx(0.46510584526020793, 1e-2)
assert result5_f["survived"][2] == pytest.approx(0.3335779245846321, 1e-2)

#
# DENSE SPEARMAN
Expand Down