-
Notifications
You must be signed in to change notification settings - Fork 45
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
1,494 additions
and
0 deletions.
There are no files selected for viewing
Binary file added
BIN
+1.16 KB
jarvis_leaderboard/contributions/chgnet_mlearn/AI-MLFF-energy-mlearn_Si-test-mae.csv.zip
Binary file not shown.
Binary file added
BIN
+97 KB
...is_leaderboard/contributions/chgnet_mlearn/AI-MLFF-forces-mlearn_Si-test-multimae.csv.zip
Binary file not shown.
1,184 changes: 1,184 additions & 0 deletions
1,184
jarvis_leaderboard/contributions/chgnet_mlearn/Train_CHGNet.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
29 changes: 29 additions & 0 deletions
29
jarvis_leaderboard/contributions/chgnet_mlearn/metadata.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
{ | ||
"model_name": "CHGNET", | ||
"project_url": "https://github.com/CederGroupHub/chgnet", | ||
"date_submitted": "01-29-2024", | ||
"author_email": "[email protected]", | ||
"database_version": "12-12-2022", | ||
"team_name": "CHGNET", | ||
"time_taken_seconds": { | ||
"AI-MLFF-energy-mlearn_Cu-test-mae.csv.zip": "", | ||
"AI-MLFF-energy-mlearn_Ge-test-mae.csv.zip": "", | ||
"AI-MLFF-energy-mlearn_Li-test-mae.csv.zip": "", | ||
"AI-MLFF-energy-mlearn_Mo-test-mae.csv.zip": "", | ||
"AI-MLFF-energy-mlearn_Ni-test-mae.csv.zip": "", | ||
"AI-MLFF-energy-mlearn_Si-test-mae.csv.zip": "", | ||
"AI-MLFF-forces-mlearn_Cu-test-multimae.csv.zip": "", | ||
"AI-MLFF-forces-mlearn_Ge-test-multimae.csv.zip": "", | ||
"AI-MLFF-forces-mlearn_Li-test-multimae.csv.zip": "", | ||
"AI-MLFF-forces-mlearn_Mo-test-multimae.csv.zip": "", | ||
"AI-MLFF-forces-mlearn_Ni-test-multimae.csv.zip": "", | ||
"AI-MLFF-forces-mlearn_Si-test-multimae.csv.zip": "" | ||
}, | ||
"language": "python", | ||
"os": "linux", | ||
"software_used": "jarvis-tools,numpy,scipy,torch,m3gnet", | ||
"hardware_used": "nisaba-cluster at NIST, V100 Tesla GPU", | ||
"git_url": [ | ||
"https://github.com/CederGroupHub/chgnet" | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
# -*- coding: utf-8 -*- | ||
"""Train_CHGNet.ipynb | ||
Automatically generated by Colaboratory. | ||
Original file is located at | ||
https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/Train_CHGNet.ipynb | ||
""" | ||
|
||
pip install -q chgnet | ||
|
||
import os | ||
if not os.path.exists('jarvis_leaderboard'): | ||
!git clone https://github.com/usnistgov/jarvis_leaderboard.git | ||
os.chdir('jarvis_leaderboard') | ||
!pip install -e . | ||
|
||
!pip install --upgrade git+https://gitlab.com/ase/ase.git@optimizer-tests | ||
|
||
!pip install numpy==1.23.5 | ||
# then restart session | ||
|
||
!wget https://figshare.com/ndownloader/files/40357663 -O mlearn.json.zip | ||
|
||
import json,zipfile | ||
mlearn = json.loads( | ||
zipfile.ZipFile("mlearn.json.zip").read( | ||
"mlearn.json" | ||
) | ||
) | ||
|
||
import os | ||
from jarvis.core.atoms import Atoms | ||
import json | ||
import shutil | ||
import warnings | ||
os.chdir('/content') | ||
elements = ['Si'] | ||
max_epochs=100 | ||
models={} | ||
for element in elements: | ||
|
||
benchmark_energies = ( | ||
"jarvis_leaderboard/jarvis_leaderboard/benchmarks/AI/MLFF/mlearn_" | ||
+ element | ||
+ "_energy.json.zip" | ||
) | ||
temp_energies = benchmark_energies.split("/")[-1].split(".zip")[0] | ||
energies = json.loads( | ||
zipfile.ZipFile(benchmark_energies).read(temp_energies) | ||
) | ||
train_ids = list(energies["train"].keys()) | ||
test_ids = list(energies["test"].keys()) | ||
|
||
train_energies=[] | ||
train_forces=[] | ||
train_stresses=[] | ||
train_structures=[] | ||
for i in mlearn: | ||
if i["jid"] in train_ids: | ||
# print(i) | ||
|
||
train_forces.append(i["forces"]) | ||
train_stresses.append(i['stresses']) | ||
atoms = Atoms.from_dict(i["atoms"]) | ||
train_energies.append(i["energy"]/atoms.num_atoms) | ||
train_structures.append(atoms.pymatgen_converter()) | ||
|
||
test_energies=[] | ||
test_forces=[] | ||
test_stresses=[] | ||
test_structures=[] | ||
tids = [] | ||
for i in mlearn: | ||
if i["jid"] in test_ids: | ||
# print(i) | ||
|
||
test_forces.append(i["forces"]) | ||
test_stresses.append(i['stresses']) | ||
atoms = Atoms.from_dict(i["atoms"]) | ||
test_energies.append(i["energy"]/atoms.num_atoms) | ||
test_structures.append(atoms.pymatgen_converter()) | ||
tids.append(i['jid']) | ||
|
||
len(test_structures) | ||
|
||
# Commented out IPython magic to ensure Python compatibility. | ||
# %%time | ||
# from chgnet.data.dataset import StructureData, get_train_val_test_loader | ||
# from chgnet.trainer import Trainer | ||
# from torch.utils.data import DataLoader, Dataset | ||
# from chgnet.model.model import CHGNet | ||
# from chgnet.data.dataset import collate_graphs | ||
# chgnet = CHGNet() | ||
# | ||
# batch_size = 2 | ||
# train_dataset = StructureData( | ||
# structures=train_structures, | ||
# energies=train_energies, | ||
# forces=train_forces, | ||
# #stresses=train_stresses, | ||
# # magmoms=None, | ||
# ) | ||
# test_dataset = StructureData( | ||
# structures=test_structures, | ||
# energies=test_energies, | ||
# forces=test_forces, | ||
# #stresses=test_stresses, | ||
# # magmoms=None, | ||
# ) | ||
# train_loader = DataLoader( | ||
# train_dataset, | ||
# batch_size=batch_size, | ||
# collate_fn=collate_graphs, | ||
# num_workers=0, | ||
# pin_memory=False, | ||
# ) | ||
# val_loader = DataLoader( | ||
# test_dataset, | ||
# batch_size=batch_size, | ||
# collate_fn=collate_graphs, | ||
# num_workers=0, | ||
# pin_memory=False, | ||
# ) | ||
# test_loader = DataLoader( | ||
# test_dataset, | ||
# batch_size=batch_size, | ||
# collate_fn=collate_graphs, | ||
# num_workers=0, | ||
# pin_memory=False, | ||
# ) | ||
# trainer = Trainer( | ||
# model=chgnet, | ||
# targets="ef", | ||
# optimizer="Adam", | ||
# criterion="MSE", | ||
# learning_rate=1e-2, | ||
# epochs=100, | ||
# use_device="cuda", | ||
# ) | ||
# | ||
# trainer.train(train_loader, val_loader, test_loader) | ||
|
||
best_model = trainer.best_model | ||
|
||
out = best_model.predict_structure(test_structures[0]) | ||
|
||
out.keys() | ||
|
||
import pandas as pd | ||
import glob | ||
import numpy as np | ||
def get_chgnet_pred(atoms=None,model=None): | ||
pmg = atoms.pymatgen_converter() | ||
out = model.predict_structure(pmg) | ||
return out['e']*atoms.num_atoms,out['f'],out['s'] | ||
|
||
best_model = trainer.best_model | ||
df = pd.DataFrame(mlearn) | ||
for i in glob.glob("jarvis_leaderboard/jarvis_leaderboard/benchmarks/AI/MLFF/*energy*.zip"): | ||
|
||
if "mlearn" in i and element in i: | ||
fname_e = ( | ||
"AI-MLFF-energy-" | ||
+ i.split("/")[-1].split("_energy.json.zip")[0] | ||
+ "-test-mae.csv" | ||
) | ||
fname_f = ( | ||
"AI-MLFF-forces-" | ||
+ i.split("/")[-1].split("_energy.json.zip")[0] | ||
+ "-test-multimae.csv" | ||
) | ||
fname_s = ( | ||
"AI-MLFF-stresses-" | ||
+ i.split("/")[-1].split("_energy.json.zip")[0] | ||
+ "-test-multimae.csv" | ||
) | ||
f_e = open(fname_e, "w") | ||
f_f = open(fname_f, "w") | ||
# f_s = open(fname_s, "w") | ||
|
||
f_e.write("id,target,prediction\n") | ||
f_f.write("id,target,prediction\n") | ||
# f_s.write("id,prediction\n") | ||
# | ||
print(i) | ||
dat = json.loads( | ||
zipfile.ZipFile(i).read( | ||
i.split("/")[-1].split(".zip")[0] | ||
) | ||
) | ||
print(dat["test"]) | ||
for key, val in dat["test"].items(): | ||
entry = df[df["jid"] == key] | ||
atoms = Atoms.from_dict(entry.atoms.values[0]) | ||
# print(key,val,df[df['jid']==key],atoms) | ||
# energy,forces=get_alignn_forces(atoms) | ||
energy, forces, stress = get_chgnet_pred( | ||
model=best_model, atoms=atoms | ||
) | ||
print(key, val, energy, atoms.num_atoms) | ||
line = ( | ||
key | ||
+ "," | ||
+ str(entry.energy.values[0]) | ||
+ "," | ||
+ str(energy) | ||
+ "\n" | ||
) | ||
f_e.write(line) | ||
line = ( | ||
key | ||
+ "," | ||
+ str( | ||
";".join( | ||
map( | ||
str, | ||
np.array( | ||
entry.forces.values[0] | ||
).flatten(), | ||
) | ||
) | ||
) | ||
+ "," | ||
+ str( | ||
";".join(map(str, np.array(forces).flatten())) | ||
) | ||
+ "\n" | ||
) | ||
f_f.write(line) | ||
# line = ( | ||
# key | ||
# + "," | ||
# + str(";".join(map(str, np.array(stress).flatten()))) | ||
# + "\n" | ||
# ) | ||
# f_s.write(line) | ||
f_e.close() | ||
f_f.close() | ||
# f_s.close() | ||
zname = fname_e + ".zip" | ||
with zipfile.ZipFile(zname, "w") as myzip: | ||
myzip.write(fname_e) | ||
|
||
zname = fname_f + ".zip" | ||
with zipfile.ZipFile(zname, "w") as myzip: | ||
myzip.write(fname_f) | ||
|
||
# zname = fname_s + ".zip" | ||
# with zipfile.ZipFile(zname, "w") as myzip: | ||
# myzip.write(fname_s) | ||
|
||
# Commented out IPython magic to ensure Python compatibility. | ||
en_df = pd.read_csv('AI-MLFF-energy-mlearn_Si-test-mae.csv.zip') | ||
from sklearn.metrics import mean_absolute_error | ||
print(mean_absolute_error(en_df['target'],en_df['prediction'])) | ||
# %matplotlib inline | ||
import matplotlib.pyplot as plt | ||
plt.plot(en_df['target'],en_df['prediction'],'.') | ||
plt.xlabel('DFT energy(eV)') | ||
plt.ylabel('FF energy(eV)') | ||
|
||
f_df = pd.read_csv('AI-MLFF-forces-mlearn_Si-test-multimae.csv.zip') | ||
target = np.concatenate([np.array(i.split(';'),dtype='float') for i in f_df['target'].values]) | ||
pred= np.concatenate([np.array(i.split(';'),dtype='float') for i in f_df['prediction'].values]) | ||
print(mean_absolute_error(target,pred)) | ||
plt.plot(target,pred,'.') | ||
plt.xlabel('DFT forces(eV/A)') | ||
plt.ylabel('FF forces(eV/A)') | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
#!/bin/bash | ||
# python jid_vac_alignn.py | ||
python make_pred.py |