Skip to content

ProtSpace is program that helps in visualizing and investigating our protein embedding space.

License

Notifications You must be signed in to change notification settings

tsenoner/protspace

Repository files navigation

ProtSpace

ProtSpace is a visualization tool for exploring protein embeddings or similarity matrix along their 3D protein structures. It allows users to interactively visualize high-dimensional protein language model data in 2D or 3D space, color-code proteins based on various features, and view protein structures when available.

Web Interface

Try ProtSpace directly in your browser without installation: https://protspace.rostlab.org/

Quick Start with Google Colab

Try ProtSpace instantly using our Google Colab notebooks:

Note: Some Google Colab functionalities may not work properly in Safari browsers. For the best experience, we recommend using Chrome or Firefox.

  1. Explore Pre-computed Visualizations: Open Explorer In Colab

  2. Generate Protein Embeddings: Open Embeddings In Colab

  3. Full Pipeline Demo: Open Pipeline In Colab

Table of Contents

Example Outputs

2D Scatter Plot (SVG)

2D Scatter Plot Example

3D Interactive Plot

View 3D Interactive Plot

Installation

pip install protspace

Usage

Data Preparation

protspace-json -i embeddings.h5 -m features.csv -o output.json --methods pca3 umap2 tsne2

Running protspace

protspace --json output.json [--pdb_zip pdb_files.zip] [--port 8050]

Access the interface at http://localhost:8050

Features

  • Interactive 2D/3D visualization with multiple dimensionality reduction methods:
    • Principal Component Analysis (PCA)
    • Multidimensional Scaling (MDS)
    • Uniform Manifold Approximation and Projection (UMAP)
    • t-Distributed Stochastic Neighbor Embedding (t-SNE)
    • Pairwise Controlled Manifold Approximation (PaCMAP)
  • Feature-based coloring and marker styling
  • Protein structure visualization (with PDB files)
  • Search and highlight functionality
  • High-quality plot exports (SVG for 2D, interactive HTML for 3D)
  • Responsive web interface

Data Preparation

The protspace-json command supports:

Required Arguments

  • -i, --input: HDF file (.h5) or similarity matrix (.csv)
  • -m, --metadata: CSV file with features (first column must be named "identifier" and match IDs in HDF5/similarity matrix)
  • -o, --output: Output JSON path
  • --methods: Reduction methods (e.g., pca2, tsne3, umap2, pacmap2, mds2)

Optional Arguments

  • --delimiter: Specify delimiter for metadata file (default: comma)
  • --custom_names: Custom projection names (e.g., pca2=PCA_2D)
  • --verbose: Increase output verbosity

Method-Specific Parameters

  • UMAP:
    • --n_neighbors: Number of neighbors (default: 15)
    • --min_dist: Minimum distance (default: 0.1)
  • t-SNE:
    • --perplexity: Perplexity value (default: 30)
    • --learning_rate: Learning rate (default: 200)
  • PaCMAP:
    • --mn_ratio: MN ratio (default: 0.5)
    • --fp_ratio: FP ratio (default: 2.0)
  • MDS:
    • --n_init: Number of initializations (default: 4)
    • --max_iter: Maximum iterations (default: 300)
    • --eps: Convergence tolerance (default: 1e-3)

Custom Feature Styling

Use protspace-feature-colors to customize feature appearance:

protspace-feature-colors input.json output.json --feature_styles '{
  "feature_name": {
    "colors": {
      "value1": "#FF0000",
      "value2": "#00FF00"
    },
    "shapes": {
      "value1": "circle",
      "value2": "square"
    }
  }
}'

Available shapes: circle, circle-open, cross, diamond, diamond-open, square, square-open, x

File Formats

Input

  1. Embeddings/Similarity
  • HDF5 (.h5) for embeddings
  • CSV for similarity matrix
  1. Metadata
  • CSV with mandatory 'identifier' column matching IDs in embeddings/similarity data
  • Additional columns for features
  1. Structures
  • ZIP containing PDB/CIF files
  • Filenames match identifiers (dots replaced with underscores)

Output

  • JSON containing:
    • Protein features
    • Projection coordinates
    • Visualization state (colors, shapes)

Citation

If you use ProtSpace in your research, please cite:

@article{SENONER2025168940,
title = {ProtSpace: A Tool for Visualizing Protein Space},
journal = {Journal of Molecular Biology},
pages = {168940},
year = {2025},
issn = {0022-2836},
doi = {https://doi.org/10.1016/j.jmb.2025.168940},
url = {https://www.sciencedirect.com/science/article/pii/S0022283625000063},
author = {Tobias Senoner and Tobias Olenyi and Michael Heinzinger and Anton Spannagl and George Bouras and Burkhard Rost and Ivan Koludarov}
}

About

ProtSpace is program that helps in visualizing and investigating our protein embedding space.

Resources

License

Stars

Watchers

Forks

Packages