-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathis_smooth_over_product.sf
38 lines (29 loc) · 1.22 KB
/
is_smooth_over_product.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/ruby
# Author: Daniel "Trizen" Șuteu
# Date: 25 October 2018
# https://github.com/trizen
# A new algorithm for testing N for B-smoothness, given the product of a subset of primes <= B.
# Returns a true value when N is the product of a subset of powers of prime factors of B.
# This algorithm can be useful in some modern integer factorization algorithms.
# Algorithm:
# 1. Let n be the number to be tested.
# 2. Let k be the product of the primes in the factor base.
# 3. Compute the greatest common divisor: g = gcd(n, k)
# 4. If g is greater than 1, then n = r * g^e, for some e >= 1.
# - If r = 1, then n is smooth over the factor base.
# - Otherwise, set n = r and go to step 3.
# 5. If this step is reached, then n is not smooth.
func is_smooth_over_prod(n, k) {
return true if (n == 1)
return false if (n <= 0)
for (var g = gcd(n,k); g > 1; g = gcd(n,g)) {
n.remdiv!(g) # remove any divisibility by g
return true if (n == 1) # smooth if n == 1
}
return false
}
# Example for checking 19-smooth numbers
var k = 19.primorial # product of primes <= 19
for n in (1..1000) {
say (n, ' = ', n.factor) if is_smooth_over_prod(n, k)
}