-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler-maclaurin_formula.sf
71 lines (55 loc) · 2.06 KB
/
euler-maclaurin_formula.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/ruby
# Simple implementation of the Euler–Maclaurin formula.
# See also:
# https://www.youtube.com/watch?v=fw1kRz83Fj0
# https://en.wikipedia.org/wiki/Numerical_differentiation
# https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
func nth_derivative(f, x, n=1, h=1e-49) {
(-1)**(n+1) * sum(0..n, {|k|
(-1)**(k+1) * binomial(n, k) * f(x + h*k)
}) / h**n
}
func integral_slow (f, from, to, dx = 0.01) {
sum(from..to `by` dx, {|x|
f(x) * dx -> float
})
}
func integral(f, left, right, ε = 1e-9) { # Adaptive Simpson's method
func quadrature_mid(l, lf, r, rf) {
var mid = (l+r)/2
var midf = f(mid)
(mid, midf, abs(r-l)/6 * (lf + 4*midf + rf))
}
func recursive_asr(a, fa, b, fb, ε, whole, m, fm) {
var (lm, flm, left) = quadrature_mid(a, fa, m, fm)
var (rm, frm, right) = quadrature_mid(m, fm, b, fb)
var Δ = (left + right - whole)
abs(Δ) <= 15*ε
? (left + right + Δ/15)
: (__FUNC__(a, fa, m, fm, ε/2, left, lm, flm) +
__FUNC__(m, fm, b, fb, ε/2, right, rm, frm))
}
var (lf = f(left), rf = f(right))
var (mid, midf, whole) = quadrature_mid(left, lf, right, rf)
recursive_asr(left, lf, right, rf, ε, whole, mid, midf)
}
func periodized_Bernoulli(k, x) {
bernoulli(k, x - floor(x))
}
func error_term(f, from, to, p) {
(-1)**(p+1) * integral({|x|
nth_derivative(f, x, p) * periodized_Bernoulli(p, x) / p! -> float
}, from, to)
}
func Euler_Maclaurin_formula(f, from, to, p = 4) {
var A = integral(f, from, to)
var B = (f(from) + f(to))/2
var C = sum(1..floor(p/2), {|k|
(bernoulli(2*k) / (2*k)!) * (nth_derivative(f, to, 2*k - 1) - nth_derivative(f, from, 2*k - 1))
})
var D = error_term(f, from, to, p)
return (A + B + C + D)
}
var f = {|x| 1 / x**3 }
say zeta(3) #=> 1.20205690315959428539973816151144999076498629234
say Euler_Maclaurin_formula(f, 1, 1000) #=> 1.20205639241256425706033823067495286909577131977