Skip to content

tris-sondon/GPU_linux

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 

Repository files navigation

Using local NVIDIA GPU with linux

Updated August 2023

Setups and configs to use NVIDIA GPU for ML

Python 3.11.5

Download source code from https://www.python.org/downloads/

To avoid ctype module error in tensorflow, before compiling python install:

sudo dnf install libffi-devel

Other libs I needed:

sudo dnf install sqlite-devel
sudo dnf install bzip2-devel

Compile from sources

For specific FLAGS go to https://docs.python.org/3/using/configure.html

tar xf Python-3.11.5.tar.xz
cd Python-3.11.5
./configure --enable-loadable-sqlite-extensions
make
sudo make install

Tensorflow

My current version: 2.13.0

Verify TF install

python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
tf.Tensor(689.1604, shape=(), dtype=float32)

Verify that TF is using the GPU

python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Get TF version

python -c "import tensorflow as tf; print(tf.__version__)"
2.13.0

Remove warnings

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

Monitor GPU usage

Install nvtop

  # Install libraries to compile the code
  sudo dnf install cmake ncurses-devel gcc-c++

  git clone [email protected]:Syllo/nvtop.git

  mkdir -p nvtop/build && cd nvtop/build
  cmake .. -DNVIDIA_SUPPORT=ON 
  sudo make install

About

Setups and configs to use NVIDIA GPU for ML

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published