Skip to content

Commit

Permalink
chore: fix diagrams for paths between categories
Browse files Browse the repository at this point in the history
  • Loading branch information
ncfavier committed Nov 7, 2023
1 parent ac9010d commit f44d1fb
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 10 deletions.
6 changes: 3 additions & 3 deletions src/Cat/Displayed/Path.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ corresponding bases, is a [[displayed functor]]

~~~{.quiver}
\[\begin{tikzcd}
{\mathcal{E}} && {\mathcal{E}} \\
{\mathcal{E}} && {\mathcal{F}} \\
\\
{\mathcal{B}_0} && {\mathcal{B}_1}
\arrow["{\mathrm{path}(\mathcal{B})}"', from=3-1, to=3-3]
Expand Down Expand Up @@ -213,11 +213,11 @@ like
{\mathcal{E}[x]} && {\mathcal{F}[x]} \\
\\
{\mathcal{F}[Fx]} && {\mathcal{F}[x]}
\arrow[""{name=0, anchor=center, inner sep=0}, "{\mathcal{F}(\operatorname{unglue}(\partial i, x)}"', from=3-1, to=3-3]
\arrow[""{name=0, anchor=center, inner sep=0}, "{\mathcal{F}(\unglue(\partial i, x))}"', from=3-1, to=3-3]
\arrow["{F_0'}"', from=1-1, to=3-1]
\arrow["{\mathrm{id}}", from=1-3, to=3-3]
\arrow[""{name=1, anchor=center, inner sep=0}, dashed, from=1-1, to=1-3]
\arrow["{\mathrm{Glue}\ ...}"{description}, draw=none, from=1, to=0]
\arrow["{\Glue\ ...}"{description}, draw=none, from=1, to=0]
\end{tikzcd}\]
~~~

Expand Down
15 changes: 8 additions & 7 deletions src/Cat/Functor/Equivalence/Path.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,14 +47,14 @@ univalence it induces an equivalence $\cC_0 \equiv \cD_0$. The
path between `Hom`{.Agda}-sets is slightly more complicated. It is,
essentially, the dashed line in the diagram

~~~{.quiver}
~~~{.quiver .tall-1}
\[\begin{tikzcd}
{\mathbf{Hom}_\mathcal{C}(x,y)} && {\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} \\
{\mathbf{Hom}_\mathcal{C}(x,y)} && {\mathbf{Hom}_\mathcal{D}(x,y)} \\
\\
{\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} && {\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)}
{\mathbf{Hom}_\mathcal{D}(F_0x,F_0y)} && {\mathbf{Hom}_\mathcal{D}(x,y)}
\arrow["{\mathrm{id}}", from=1-3, to=3-3]
\arrow["{F_1}"', from=1-1, to=3-1]
\arrow["{\mathrm{Hom}_\mathcal{D}(x, y)}"', from=3-1, to=3-3]
\arrow["{\mathrm{Hom}_\mathcal{D}(\unglue x, \unglue y)}"', from=3-1, to=3-3, outer sep=0.5em]
\arrow[dashed, from=1-1, to=1-3]
\end{tikzcd}\]
~~~
Expand All @@ -71,11 +71,12 @@ essentially, the dashed line in the diagram
hom i x y = Glue (D.Hom (unglue (i ∨ ~ i) x) (unglue (i ∨ ~ i) y)) (sys i x y)
```

Note that $\rm{unglue}_{i \lor \neg i}(x)$ is a term in $\cD_0$ which
evaluates to $F_0(x)$ when $i = i1$ or $i = i0$, so that the system
Note that $\unglue_{i \lor \neg i}x$ is a term in $\cD_0$ which
evaluates to $F_0(x)$ when $i = i0$ (and thus $x$ has type $\cC_0$) and $x$
when $i = i1$ (and thus $x$ has type $\cD_0$), so that the system
described above can indeed be built. The introduction rule for
`hom`{.Agda} is `hom-glue`{.Agda}: If we have a partial element $\neg i
\vdash f : \hom_\mathcal{C} x y$ together with an element $g$ of base
\vdash f : \hom_\cC(x, y)$ together with an element $g$ of base
type satisfying definitionally $\neg i \vdash F_1(f) = g$, we may glue
$f$ along $g$ to get an element of $\hom_i(x, y)$.

Expand Down
4 changes: 4 additions & 0 deletions src/preamble.tex
Original file line number Diff line number Diff line change
Expand Up @@ -109,3 +109,7 @@
\DeclareMathOperator{\Nf}{Nf}
\DeclareMathOperator{\reify}{reify}
\DeclareMathOperator{\reflect}{reflect}

\DeclareMathOperator{\Glue}{Glue}
\DeclareMathOperator{\glue}{glue}
\DeclareMathOperator{\unglue}{unglue}

0 comments on commit f44d1fb

Please sign in to comment.