Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[runtime] initial support for running model on device #8

Merged
merged 1 commit into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions pybuda/csrc/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ add_subdirectory(autograd)
add_subdirectory(shared_utils)
add_subdirectory(backend_api)
add_subdirectory(reportify)
add_subdirectory(runtime)
add_subdirectory(tt_torch_device)

### pybuda_csrc_objs ###
Expand Down Expand Up @@ -77,17 +78,23 @@ target_link_libraries(pybuda_csrc PRIVATE
backend_api
reportify
tt_torch_device
runtime
pybuda_csrc_objs

# NOTE: ordering of the libraries will affect the linking
LLVM
MLIR
TTNNTargetFlatbuffer
MLIRTTDialect
MLIRTTIRDialect
MLIRTTNNDialect
MLIRTTIRTransforms
MLIRTTNNTransforms
MLIRTTKernelDialect
MLIRTTMetalDialect
MLIRTTIRTransforms
MLIRTTNNTransforms
MLIRTTIRAnalysis
MLIRTTNNPipelines
TTMLIRTTNNToEmitC
TTRuntime
TTRuntimeTTNN
tt_metal
Expand Down
4 changes: 1 addition & 3 deletions pybuda/csrc/buda_passes.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@ std::vector<std::pair<graphlib::NodeId, graphlib::NodeId>> run_post_autograd_gra
}

// ********** Run pre-lowering passes **********
graphlib::Graph* run_lower_to_mlir_passes(graphlib::Graph *graph)
graphlib::Graph* run_pre_lowering_passes(graphlib::Graph *graph)
{
passes::print_graph(graph, "PRE_MLIR");
// Recalculate shapes, and figure out implicit broadcasts that are missing
Expand Down Expand Up @@ -227,8 +227,6 @@ graphlib::Graph* run_lower_to_mlir_passes(graphlib::Graph *graph)
fold_tile_broadcast_ops_into_inputs(graph);
fold_tile_broadcast_ops_into_reduce(graph);

std::shared_ptr<void> binary = passes::run_mlir_compiler(graph);

return graph;
}

Expand Down
4 changes: 2 additions & 2 deletions pybuda/csrc/buda_passes.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ std::unique_ptr<graphlib::Graph> run_pre_placer_buda_passes(
bool use_interactive_placer = true,
bool enable_device_tilize = false);

// Pre-lowering passes, last-minute changes before going to buda ops
graphlib::Graph* run_lower_to_mlir_passes(graphlib::Graph *graph);
// Pre-lowering passes, last-minute changes before going to MLIR
graphlib::Graph* run_pre_lowering_passes(graphlib::Graph *graph);

}
3 changes: 2 additions & 1 deletion pybuda/csrc/module.mk
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ include pybuda/csrc/autograd/module.mk
include pybuda/csrc/reportify/module.mk
include pybuda/csrc/backend_api/module.mk
include pybuda/csrc/tt_torch_device/module.mk
include pybuda/csrc/runtime/module.mk

PYBUDA_CSRC_LDFLAGS = -Wl,-rpath,\$$ORIGIN/../python_env/lib/$(PYTHON_VERSION)/site-packages/torch/lib -ltorch -ltorch_cpu -lc10 -ltorch_python $(PYTHON_LDFLAGS) -l$(PYTHON_VERSION) $(MLIR_LIB_DIR) $(MLIR_LIBS) $(TT_MLIR_LIBS) $(RUNTIME_LIBS) -lm -lz -lcurses -lxml2 -lflatbuffers

Expand All @@ -44,7 +45,7 @@ PYBUDA_THIRD_PARTY_DEPS = $(SUBMODULESDIR)/third_party/pybind11.checkout

-include $(PYBUDA_CSRC_DEPS)

$(PYBUDA_CSRC_LIB): $(PYBUDA_CSRC_OBJS) $(PYBUDA_CSRC_GRAPH_LIB) $(PYBUDA_CSRC_AUTOGRAD) $(PYBUDA_CSRC_PATTERN_MATCHER_LIB) $(PYBUDA_CSRC_BALANCER_LIB) $(PYBUDA_CSRC_PLACER_LIB) $(PYBUDA_CSRC_SCHEDULER_LIB) $(PYBUDA_CSRC_REPORTIFY) $(PYBUDA_CSRC_BACKENDAPI_LIB) $(PYBUDA_CSRC_SHARED_UTILS_LIB) $(PYBUDA_CSRC_PERF_MODEL_LIB) $(PYBUDA_CSRC_TT_TORCH_DEVICE_LIB)
$(PYBUDA_CSRC_LIB): $(PYBUDA_CSRC_OBJS) $(PYBUDA_CSRC_GRAPH_LIB) $(PYBUDA_CSRC_AUTOGRAD) $(PYBUDA_CSRC_PATTERN_MATCHER_LIB) $(PYBUDA_CSRC_BALANCER_LIB) $(PYBUDA_CSRC_PLACER_LIB) $(PYBUDA_CSRC_SCHEDULER_LIB) $(PYBUDA_CSRC_REPORTIFY) $(PYBUDA_CSRC_BACKENDAPI_LIB) $(PYBUDA_CSRC_SHARED_UTILS_LIB) $(PYBUDA_CSRC_PERF_MODEL_LIB) $(PYBUDA_CSRC_TT_TORCH_DEVICE_LIB) $(PYBUDA_CSRC_RUNTIME_LIB)
@mkdir -p $(LIBDIR)
$(CXX) $(PYBUDA_CSRC_CFLAGS) $(CXXFLAGS) $(SHARED_LIB_FLAGS) -L$(TORCH_LIB_DIR) -o $@ $^ $(LDFLAGS) $(PYBUDA_CSRC_LDFLAGS)

Expand Down
5 changes: 5 additions & 0 deletions pybuda/csrc/passes/lower_to_mlir.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -210,6 +210,11 @@ class MLIRGenerator
auto opResult = builder_.create<mlir::tt::ttir::AddOp>(get_pybuda_operation_location(graph, op_node), return_types, inputs, outputs, atributes);
return opResult.getResult(0);
}
else if (op_node->op_name() == "multiply")
{
auto opResult = builder_.create<mlir::tt::ttir::MultiplyOp>(get_pybuda_operation_location(graph, op_node), return_types, inputs, outputs, atributes);
return opResult.getResult(0);
}
else {
log_error("Unsupported operation for lowering from PyBuda to TTIR: {}", op_node->op_name());
throw std::runtime_error("Unsupported operation for lowering from PyBuda to TTIR");
Expand Down
16 changes: 12 additions & 4 deletions pybuda/csrc/passes/mlir_compiler.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
//
// SPDX-License-Identifier: Apache-2.0
#include "mlir_compiler.hpp"
#include <memory>
#include "lower_to_mlir.hpp"
#include "mlir_passes.hpp"

Expand All @@ -17,15 +18,18 @@
#pragma clang diagnostic pop

// TTMLIR headers
#include "tt/runtime/types.h"
#include "ttmlir/Dialect/TT/IR/TT.h"
#include "ttmlir/Dialect/TTIR/IR/TTIR.h"
#include "ttmlir/Dialect/TTNN/IR/TTNN.h"
#include "ttmlir/Dialect/TTNN/Transforms/TTNNToSerializedBinary.h"
#include "ttmlir/Target/TTNN/TTNNToFlatbuffer.h"

#include "tt_torch_device/tt_device.hpp"

namespace tt::passes
{
/// Public API for lowering to MLIR, running MLIR passes and generate runtime binary.
std::shared_ptr<void> run_mlir_compiler(tt::graphlib::Graph *graph)
runtime::Binary run_mlir_compiler(tt::graphlib::Graph *graph)
{
// Register all the required dialects.
mlir::DialectRegistry registry;
Expand All @@ -34,7 +38,7 @@ namespace tt::passes
mlir::tt::TTDialect, mlir::tt::ttir::TTIRDialect,
mlir::tt::ttnn::TTNNDialect, mlir::arith::ArithDialect,
mlir::func::FuncDialect, mlir::ml_program::MLProgramDialect,
mlir::tensor::TensorDialect, mlir::emitc::EmitCDialect>();
mlir::tensor::TensorDialect>();

// Create a context with all registered dialects.
mlir::MLIRContext context(registry);
Expand All @@ -43,17 +47,21 @@ namespace tt::passes

// Generate MLIR from the PyBuda graph.
mlir::OwningOpRef<mlir::ModuleOp> mlir_module = lower_to_mlir(graph, context);
tt::log_info("MLIR module generated successfully.");

// Run MLIR registered passes.
run_mlir_passes(mlir_module);
tt::log_info("MLIR passes run successfully.");

// Generate binary from the MLIR module.
auto binary = mlir::tt::ttnn::emitTTNNAsFlatbuffer(mlir_module);
auto binary = mlir::tt::ttnn::ttnnToFlatbuffer(mlir_module.get());
tt::log_info("Flatbuffer binary generated successfully.");

if (binary == nullptr)
{
throw std::runtime_error("Failed to generate flatbuffer binary.");
}

return binary;
}
}
13 changes: 9 additions & 4 deletions pybuda/csrc/passes/mlir_compiler.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,18 @@
#pragma once
#include <memory>

namespace tt::graphlib
#include "tt/runtime/types.h"

namespace tt
{
class Graph;
namespace graphlib
{
class Graph;
}
}

namespace tt::passes
{
/// Public API for running MLIR passes and generating binary.
std::shared_ptr<void> run_mlir_compiler(tt::graphlib::Graph *graph);
}
runtime::Binary run_mlir_compiler(tt::graphlib::Graph *graph);
}
46 changes: 37 additions & 9 deletions pybuda/csrc/passes/mlir_passes.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,24 +10,52 @@
#include "mlir/IR/BuiltinOps.h"

// TTMLIR headers
#include "ttmlir/Dialect/TTIR/Passes.h"
#include "ttmlir/Dialect/TTNN/Passes.h"
#include "ttmlir/Dialect/TTNN/IR/TTNN.h"
#include "ttmlir/Dialect/TTIR/Transforms/Passes.h"
#include "ttmlir/Dialect/TTNN/Transforms/Passes.h"
#include "ttmlir/Dialect/TTNN/Pipelines/Passes.h"
#include "utils/logger.hpp"

namespace tt::passes
{
/// Public API for running MLIR passes and generating binary.
void run_mlir_passes(mlir::OwningOpRef<mlir::ModuleOp> &mlir_module)
{
// Register required passes
mlir::tt::ttir::registerPasses();
mlir::tt::ttnn::registerPasses();
static bool _ = []() {
// Register required passes
mlir::tt::ttir::registerPasses();
mlir::tt::ttnn::registerPasses();

// Register pass pipelines
// This will internally register the pipelines in the MLIR pipeline registry. Then,
// the registry can be used to lookup the pipeline by its name and add it to the pass manager.
mlir::tt::ttnn::registerTTNNPipelines();

return true;
}();
(void)_;

// Create a pass manager.
mlir::PassManager pm(mlir_module.get()->getName());

// Create a pass pipeline
mlir::tt::ttnn::createTTIRToTTNNBackendPipeline(pm);
// Get the pipeline info for the wanted pipeline.
const auto pipelineInfo = mlir::PassPipelineInfo::lookup("ttir-to-ttnn-backend-pipeline");

// This error handler is necessary when adding the pipeline to the pass manager (via PassPipelineInfo).
// It's supposed to be called when there's an error during parsing of the pipeline options.
// However, I think it's wrongly implemented in the MLIR library, so it doesn't get called.
mlir::function_ref<mlir::LogicalResult(const mlir::Twine &)> err_handler = [](const mlir::Twine &location) {
log_error(LogMLIRGenerator, "Error during parsing pipeline options: {}", location.str());
return mlir::failure();
};

// Pipeline options are empty for now.
std::string options{""};

auto result = pipelineInfo->addToPipeline(pm, options, err_handler);
if (mlir::failed(result))
{
throw std::runtime_error("Failed to add the pipeline to the pass manager!");
}

// Run the pass manager.
if (mlir::failed(pm.run(mlir_module.get())))
Expand All @@ -37,4 +65,4 @@ namespace tt::passes

mlir_module.get().dump();
}
}
}
9 changes: 8 additions & 1 deletion pybuda/csrc/pybuda_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,12 +26,15 @@ namespace py = pybind11;
#include "passes/move_index_to_mm_weights.hpp"
#include "passes/passes_utils.hpp"
#include "passes/python_bindings.hpp"
#include "passes/mlir_compiler.hpp"
#include "python_bindings_common.hpp"
#include "reportify/reportify.hpp"
#include "runtime/python_bindings.hpp"
#include "shared_utils/sparse_matmul_utils.hpp"
#include "tt_torch_device/python_bindings.hpp"
#include "utils/ordered_associative_containers/ordered_map.hpp"
#include "utils/signal_handlers.hpp"

namespace tt {

PYBIND11_MODULE(_C, m) {
Expand Down Expand Up @@ -116,6 +119,9 @@ PYBIND11_MODULE(_C, m) {
py::module_ m_torch_device = m.def_submodule("torch_device", "TT Torch Device");
TorchDeviceModule(m_torch_device);

py::module m_runtime = m.def_submodule("runtime", "Submodule defining runtime functions");
RuntimeModule(m_runtime);

py::enum_<tt::MathFidelity>(m, "MathFidelity")
.value("LoFi", tt::MathFidelity::LoFi)
.value("HiFi2", tt::MathFidelity::HiFi2)
Expand Down Expand Up @@ -178,7 +184,8 @@ PYBIND11_MODULE(_C, m) {
py::arg("op_intermediates_to_save") = std::vector<std::string>{},
py::arg("use_interactive_placer") = true,
py::arg("enable_device_tilize") = false);
m.def("run_lower_to_mlir_passes", &run_lower_to_mlir_passes);
m.def("run_pre_lowering_passes", &run_pre_lowering_passes);
m.def("run_mlir_compiler", &passes::run_mlir_compiler);

m.def(
"dump_graph",
Expand Down
4 changes: 4 additions & 0 deletions pybuda/csrc/runtime/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
add_library(runtime STATIC runtime.cpp tt_device.cpp python_bindings.cpp)
add_dependencies(runtime build_tt_mlir)

target_compile_options(runtime PRIVATE ${STATIC_LIB_FLAGS} ${PYBUDA_CSRC_CFLAGS})
19 changes: 19 additions & 0 deletions pybuda/csrc/runtime/python_bindings.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
// SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
//
// SPDX-License-Identifier: Apache-2.0

#include "runtime/python_bindings.hpp"
#include "runtime/runtime.hpp"
#include "tt/runtime/types.h"

namespace tt {

void RuntimeModule(py::module &m_runtime)
{
py::class_<runtime::Binary>(m_runtime, "Binary")
.def("get_program_inputs", &runtime::Binary::getProgramInputs)
.def("get_program_outputs", &runtime::Binary::getProgramOutputs);
m_runtime.def("run_binary", tt::run_binary);
}

} // namespace tt
19 changes: 19 additions & 0 deletions pybuda/csrc/runtime/python_bindings.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
// SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
//
// SPDX-License-Identifier: Apache-2.0

#pragma once

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments"
#include "pybind11/pybind11.h"
#include <pybind11/stl.h>
#include <pybind11/numpy.h>
#pragma clang diagnostic pop
namespace py = pybind11;

namespace tt {

void RuntimeModule(py::module &m_runtime);

} // namespace tt
Loading
Loading