Skip to content

svetly-todorov/weaviate-benchmarking

 
 

Repository files navigation

Weaviate Benchmarking

This repo contains both a library for benchmarking Weaviate e2e as well as a CLI tool that makes use of the same library

Documentation for benchmarker

ANN benchmark

Spin up two machines:

Machine description CPU type CPUs Memory Disk size Disk type Misc.
Machine to run Weaviate c2 30 120GB 500GB SSD Ubuntu 22.04 with Docker-compose
Machine to run benchmark script N2 8 64GB 500GB SSD Ubuntu 22.04 with Docker-compose

Prepare the Weaviate machine

Clone this repo and cd into it $ git clone https://github.com/semi-technologies/weaviate-benchmarking && cd weaviate-benchmarking

Run the following command to spin up Weaviate: $ docker-compose up weaviate -d

Copy the interal IP address and amount of CPU cores this machine has.

Prepare the benchmark machine

Check if the Weaviate machine is available: $ http://{IP OF WEAVIATE INSTANCE}/v1/meta. Note that the instance runs on port 8080, e.g., http://10.128.15.12:8080/v1/meta

Clone this repo and cd into it $ git clone https://github.com/semi-technologies/weaviate-benchmarking && cd weaviate-benchmarking

Download the files into a benchmark-data folder as outlined below.

$ mkdir benchmark-data && \
    curl -o ./benchmark-data/deep-image-96-angular.hdf5 http://ann-benchmarks.com/deep-image-96-angular.hdf5 && \
    curl -o ./benchmark-data/mnist-784-euclidean.hdf5 http://ann-benchmarks.com/mnist-784-euclidean.hdf5 && \
    curl -o ./benchmark-data/gist-960-euclidean.hdf5 http://ann-benchmarks.com/gist-960-euclidean.hdf5 && \
    curl -o ./benchmark-data/glove-25-angular.hdf5 http://ann-benchmarks.com/glove-25-angular.hdf5

Update the following lines in docker-compose.yml.

services:
  benchmark-ann:
      dockerfile: Dockerfile-ann # <== update this line

Update the file: ./benchmark-scripts/ann/benchmark.py. weaviate_url should be set to the Weaviate instance and CPUs should be set to the amount of CPUs on the machine running Weaviate.

Build the container: $ docker-compose build --no-cache

Run the container: $ docker-compose up benchmark-ann -d

The benchmark container will ouput files in the format: results/weaviate_benchmark__{benchmark file}__{ef constructuin}__{max connections}.json

Update the benchmark config

You can update the HNSW build config for this benchmark here.

ANN 1B benchmark

Kubernetes cluster

Follow these steps in the Weaviate docs to create a Weaviate Kubernetes cluster.

Our K8s setup:

  • 5 pods
  • Per pod
    • 320 RAM - 80 CPU
    • SSD 960gb

Update weaviate_url in benchmark-scripts/ann-1B/benchmark.py to reflect the URL of the cluster.

Import machine

Create a machine with >= 16 CPUs, 16 GB in memory, and a 200 GB SSD. The import will run from this machine.

Clone this repo and cd into it $ git clone https://github.com/semi-technologies/weaviate-benchmarking && cd weaviate-benchmarking

Download the files into a benchmark-data folder as outlined below.

$ mkdir benchmark-data && \
    curl -o ./benchmark-data/sift-128-euclidean.hdf5 https://storage.googleapis.com/semi-technologies-public-data/sift-1B-128-euclidean.hdf5

Update the following lines in docker-compose.yml.

services:
  benchmark-ann:
      dockerfile: Dockerfile-ann1b # <== update this line

Build the container: $ docker-compose build --no-cache

Run the container: $ docker-compose up -d

The benchmark container will ouput files in the format: results/weaviate_benchmark__{benchmark file}__{ef constructuin}__{max connections}.json

Inverted index benchmark

Clone this repo and cd into it $ git clone https://github.com/semi-technologies/weaviate-benchmarking && cd weaviate-benchmarking

Spin up a beefy machine, we've used a 32 CPU, 400GB Memory, 1000 GB SSD persistent disk that has Docker installed.

services:
  benchmark-ann:
      dockerfile: Dockerfile-ii # <== update this line

ANN + inverted index benchmark

coming soon

Import transformers module benchmark

coming soon

Documentation for speed benchmarker

Once installed (see-below), the tools tries to be entirely self-documenting. Every command has a -h help option that can tell you where to go from there. For example, start with a root help command running benchmarker -h and it will print something like the following output to tell you where to go from there:

A Weaviate Benchmarker

Usage:
  benchmarker [flags]
  benchmarker [command]

Available Commands:
  dataset        Benchmark vectors from an existing dataset
  help           Help about any command
  random-text    Benchmark nearText searches
  random-vectors Benchmark nearVector searches

Flags:
  -h, --help   help for benchmarker

Use "benchmarker [command] --help" for more information about a command.

Once you picked the command you're interested in, you can again use the help command to learn about the flags, for example running benchmarker dataset -h results in the following output:

Specify an existing dataset as a list of query vectors in a .json file to parse the query vectors and then query them with the specified parallelism

Usage:
  benchmarker dataset [flags]

Flags:
  -a, --api string         The API to use on benchmarks (default "graphql")
  -c, --className string   The Weaviate class to run the benchmark against
  -f, --format string      Output format, one of [text, json] (default "text")
  -h, --help               help for dataset
  -l, --limit int          Set the query limit (top_k) (default 10)
  -u, --origin string      The origin that Weaviate is running at (default "http://localhost:8080")
  -o, --output string      Filename for an output file. If none provided, output to stdout only
  -p, --parallel int       Set the number of parallel threads which send queries (default 8)
  -q, --queries string     Point to the queries file, (.json)
  -w, --where string       An entire where filter as a string

Installation / Running the CLI

Option 1: Download a pre-compiled binary

Not supported yet, there is no CI pipeline yet that pushes artifacts

Option 2: With a local Go runtime, compiling on the fly

Print the available commands

cd benchmarker
go run . help

An example command

go run . random-vectors -c MyClass -d 384 -q 10000 -p 8 -a graphql -l 10

or the same command with the long-style flags:

go run . \
  random-vectors \
  --className MyClass \
  --dimensions 384 \
  --queries 10000 \
  --parallel 8 \
  --api graphql \
  --limit 10

Option 3: With a local Go runtime, compile and install just once

Install:

cd benchmarker && go install .

(Make sure your PATH is configured correctly to run go-install-ed binaries)

Run an example command

benchmarker random-vectors -c MyClass -d 384 -q 10000 -p 8 -a graphql -l 10

or the same command with the long-style flags:

benchmarker \
  random-vectors \
  --className MyClass \
  --dimensions 384 \
  --queries 10000 \
  --parallel 8 \
  --api graphql \
  --limit 10

Use benchmarking API programmatically

TODO

Roadmap

  • support random vectors
  • support specific vectors from json input file
  • print results as json
  • store results to file
  • take in ground-truth file to calculate recall
  • add versioning
  • pre-build binaries on CI and attach them to releases

About

Tools for various benchmarking scenarios

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 66.3%
  • Python 33.5%
  • Dockerfile 0.2%