Skip to content

Commit

Permalink
Update docs
Browse files Browse the repository at this point in the history
  • Loading branch information
smathot committed Dec 4, 2023
1 parent c5c2730 commit 05a987d
Show file tree
Hide file tree
Showing 4 changed files with 15 additions and 5 deletions.
Binary file modified img/signal-plot-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified img/signal-plot-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
5 changes: 3 additions & 2 deletions readme-template.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,8 @@ The `plot()` function provides a convenient way to plot pupil size over time as
import time_series_test as tst
from matplotlib import pyplot as plt

tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type')
tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
sampling_freq=100)
plt.savefig('img/signal-plot-1.png')
```

Expand Down Expand Up @@ -144,7 +145,7 @@ We can pass the `results` to `plot()` to visualize the results:
```python
plt.clf()
tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
results=results)
results=results, sampling_freq=100)
plt.savefig('img/signal-plot-2.png')
```

Expand Down
15 changes: 12 additions & 3 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,8 @@ The `plot()` function provides a convenient way to plot pupil size over time as
import time_series_test as tst
from matplotlib import pyplot as plt

tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type')
tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
sampling_freq=100)
plt.savefig('img/signal-plot-1.png')
```

Expand Down Expand Up @@ -196,7 +197,7 @@ We can pass the `results` to `plot()` to visualize the results:
```python
plt.clf()
tst.plot(dm, dv='pupil', hue_factor='set_size', linestyle_factor='color_type',
results=results)
results=results, sampling_freq=100)
plt.savefig('img/signal-plot-2.png')
```

Expand Down Expand Up @@ -387,7 +388,7 @@ Performs a sample-by-sample linear-mixed-effects analysis. See
- `z`: the z value
- `se`: the standard error

## <span style="color:purple">time\_series\_test.plot</span>_(dm, dv, hue\_factor, results=None, linestyle\_factor=None, hues=None, linestyles=None, alpha\_level=0.05, annotate\_intercept=False, annotation\_hues=None, annotation\_linestyle=':', legend\_kwargs=None, annotation\_legend\_kwargs=None)_
## <span style="color:purple">time\_series\_test.plot</span>_(dm, dv, hue\_factor, results=None, linestyle\_factor=None, hues=None, linestyles=None, alpha\_level=0.05, annotate\_intercept=False, annotation\_hues=None, annotation\_linestyle=':', legend\_kwargs=None, annotation\_legend\_kwargs=None, x0=0, sampling\_freq=1)_

Visualizes a time series, where the signal is plotted as a function of
sample number on the x-axis. One fixed effect is indicated by the hue
Expand Down Expand Up @@ -457,6 +458,14 @@ annotated in the figure.
Optional keywords to be passed to `plt.legend()` for the annotation
legend.

* **x0: int, float**

The starting value on the x-axis.

* **sampling\_freq: int, float**

The sampling frequency.

## <span style="color:purple">time\_series\_test.summarize</span>_(results, detailed=False)_

Generates a string with a human-readable summary of a results `dict` as
Expand Down

0 comments on commit 05a987d

Please sign in to comment.