Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code Llama Fine-tuning Support #194

Merged
merged 15 commits into from
Nov 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@ dmypy.json
.idea/

### VisualStudioCode ###
.vscode
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
Expand Down
2 changes: 1 addition & 1 deletion known_models_db/refact_known_models/huggingface.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@
},
"required_memory_mb": 14000,
"T": 2048,
"filter_caps": ["completion"],
"filter_caps": ["completion", "finetune"],
},
"wizardlm/30b": {
"backend": "transformers",
Expand Down
8 changes: 8 additions & 0 deletions refact_data_pipeline/finetune/finetune_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,14 @@ def set_lora_dropout(self, dropout: float) -> 'ConfigBuilder':
def set_lora_init_scale(self, init_scale: float) -> 'ConfigBuilder':
self.cfg['model_info']['lora']['lora_init_scale'] = init_scale
return self

def set_freeze_exceptions(self, exceptions: List[str]) -> 'ConfigBuilder':
self.cfg['model_info']['freeze_exceptions'] = exceptions
return self

def set_save_every(self, save_every: int) -> 'ConfigBuilder':
self.cfg['save_every'] = save_every
return self

def set_limit_time_seconds(self, seconds: int) -> 'ConfigBuilder':
self.cfg['limit_time_seconds'] = seconds
Expand Down
15 changes: 13 additions & 2 deletions refact_data_pipeline/finetune/finetune_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,8 @@ def _get_ds_len_per_epoch(model_name, cfg_builder):
.set_schedule_by_heuristics(ds_len=ds_len)
.set_low_gpu_mem_mode_by_heuristics())
else:
traces.log('Not using heuristics')
traces.log('low_gpu_mem_mode: %s' % user_cfg['low_gpu_mem_mode'])
(cfg_builder
.set_train_steps(user_cfg['train_steps'])
.set_lr_decay_steps(user_cfg['lr_decay_steps'])
Expand All @@ -116,7 +118,10 @@ def _get_ds_len_per_epoch(model_name, cfg_builder):
.set_batch_size(user_cfg['batch_size'])
.set_warmup_steps(user_cfg['warmup_num_steps'])
.set_limit_time_seconds(user_cfg['limit_time_seconds'])
.set_weight_decay(user_cfg['weight_decay']))
.set_weight_decay(user_cfg['weight_decay'])
.set_lora_target_modules(user_cfg['lora_target_modules'])
.set_freeze_exceptions(user_cfg['freeze_exceptions'])
.set_save_every(user_cfg['save_every']))

traces.log(f'Freeze exceptions: {cfg_builder.cfg["model_info"]["freeze_exceptions"]}')
for k, v in cfg_builder.cfg["model_info"]["lora"].items():
Expand All @@ -143,6 +148,7 @@ def create_data(model_name, cfg, enc) -> Tuple[Any, Optional[Any]]:
test_pipe = getattr(finetune_datasource, model_config["test_ds_pipeline"]["pipeline_name"])

train_ds = train_pipe(filtered_train, train_dataopts)
traces.log('train batch size: %s' % cfg['train_batch_size'])
train_ds = BatchIterator(train_ds, dataopts=dict(
batch_size=cfg['train_batch_size'],
drop_last=True
Expand Down Expand Up @@ -182,6 +188,7 @@ def _save_checkpoint(force: bool = False):
tag = "iter%04d-trainloss%0.3f" % (iter_n, progress["loss"])
traces.log("saving checkpoint %s" % tag)
save_model_state(model, save_path=save_path, tag=tag)
traces.log("finished saving checkpoint %s" % tag)

model_config = supported_models.config[model_name]
save_path = os.path.join(traces.context().path, "checkpoints")
Expand Down Expand Up @@ -220,7 +227,9 @@ def _save_checkpoint(force: bool = False):
f"({batch['mask'].sum()}/{batch['mask'].numel()})"
)

print("train batch size: %s" % cfg.get("train_batch_size"))
for b0 in range(0, cfg.get("train_batch_size"), cfg.get("micro_batch_size")):

try:
input = batch['input'][b0:b0 + micro_bs].contiguous()
logits = forward(input=input, low_gpu_mem_mode=low_gpu_mem_mode)
Expand Down Expand Up @@ -309,7 +318,7 @@ def _save_checkpoint(force: bool = False):
def finetune(status_dict, models_db: Dict[str, Any]):
logging.info("starting finetune at %s" % traces.context().path)
cfg = load_finetune_config(models_db)
traces.log("creating model...")
traces.log("Creating model %s..." % cfg['model_name'])
t0 = time.time()
model = make_model(
model_name=cfg['model_name'],
Expand All @@ -328,8 +337,10 @@ def finetune(status_dict, models_db: Dict[str, Any]):
)
t1 = time.time()
traces.log("/model %0.1fms" % ((t1 - t0) * 1000))
traces.log(cfg)
if cfg['debug']:
summary(model, depth=4, col_names=['num_params', 'params_percent', 'trainable'])

model, optimizer, _, _ = deepspeed.initialize(
config=cfg,
model=model,
Expand Down
5 changes: 4 additions & 1 deletion refact_data_pipeline/finetune/finetune_train_defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,8 @@
"lora_alpha": 32,
"lora_init_scale": 0.01,
"lora_dropout": 0.01,
"low_gpu_mem_mode": True
"low_gpu_mem_mode": True,
"lora_target_modules": ["qkv", "out", "mlp"],
"freeze_exceptions": ["wte", "lm_head", "lora"],
"save_every": 10
}
7 changes: 5 additions & 2 deletions refact_data_pipeline/finetune/model_handling.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,8 +107,8 @@ def save_model_state(model, save_path, tag):
'skipped_steps', 'global_steps', 'global_samples', 'dp_world_size', 'mp_world_size',
'ds_config', 'ds_version'
}

model.save_checkpoint(save_path, tag=tag)
model.save_checkpoint(save_dir=save_path, tag=tag)
cp_path = Path(save_path) / tag
model_cps = [p for p in cp_path.iterdir() if 'model_states' in p.name]
_ = [p.unlink() for p in cp_path.iterdir() if 'model_states' not in p.name]
Expand Down Expand Up @@ -141,6 +141,9 @@ def setup_encoding(
encoding.INFILL = model_config["tokenizer"]["fim_middle"]
encoding.SUFFIX = model_config["tokenizer"]["fim_suffix"]
encoding.ESCAPE = model_config["tokenizer"]["escape"]
encoding.BOS = model_config["tokenizer"]["bos"] if model_config["tokenizer"]["bos"] else ""
encoding.EOS = model_config["tokenizer"]["eos"] if model_config["tokenizer"]["eos"] else ""

return encoding


Expand Down
40 changes: 40 additions & 0 deletions refact_data_pipeline/finetune/supported_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,5 +151,45 @@
},
"train_model_modifiers": [],
"force_enable_checkpointing": True
},

"codellama/7b": {
"lora_target_modules_mapping": {
"qkv": ["attn.q_attn", "attn.c_attn"],
"out": ["attn.c_proj"],
"backproj": ["attn.c_proj"],
"mlp": ["mlp.c_fc", "mlp.c_proj"],
},
"freeze_exceptions_mapping": {
"wte": "wte",
"lm_head": "lm_head",
"lora": "lora"
},
"tokenizer": {
"eot_idx": 6,
"padding_idx": 7,
"fim_prefix": 3,
"fim_middle": 4,
"fim_suffix": 5,
"escape": 7,
"bos": 1,
"eos": 2
},
"train_ds_pipeline": {
"ds_opts": "n_ctx={n_ctx},fim_probability=0.9,fim_drop_residual=1,"
"tkr_stochastic_tokens=3,shuffle_depth=3000,debug=0,"
"random_trim_context_prob=0.01,fim_random_seed=42",
"pipeline_name": "local_fim"
},
"test_ds_pipeline": {
"ds_opts": "n_ctx={n_ctx},fim_probability=0.9,fim_drop_residual=1,"
"tkr_stochastic_tokens=3,shuffle_depth=3000,debug=0,"
"random_trim_context_prob=0.01,fim_random_seed=42,"
"pack_single=1,pack_complete=0,pack_buffer_size=25,"
"quit_on_epoch=1,seed=42",
"pipeline_name": "local_fim"
},
"train_model_modifiers": [],
"force_enable_checkpointing": True
}
}
1 change: 1 addition & 0 deletions refact_encoding/encoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,7 @@ def __init__(self, name: str):
self.EOT = self._sentencepiece_tokenizer.eos_id()
self.LF = 13


elif name in ['bigcode_largemodel']:
import tokenizers
filename = Path(__file__).resolve().parent / f"{name}.json"
Expand Down
Loading