Skip to content

Commit

Permalink
added mukh and pikh
Browse files Browse the repository at this point in the history
  • Loading branch information
manuelhelmerichs committed Nov 11, 2024
1 parent 7b6d57a commit 301e9a9
Showing 1 changed file with 5 additions and 0 deletions.
5 changes: 5 additions & 0 deletions basic-ml.tex
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,8 @@

% prior probabilities
\newcommand{\pik}[1][k]{\pi_{#1}} % pi_k, prior
\newcommand{\pih}{\hat{\pi}} % pi hat, estimated prior (binary classification)
\newcommand{\pikh}[1][k]{\hat{\pi}_{#1}} % pi_k hat, estimated prior
\newcommand{\lpik}[1][k]{\log \pi_{#1}} % log pi_k, log of the prior
\newcommand{\pit}{\pi(\thetav)} % Prior probability of parameter theta

Expand All @@ -137,6 +139,7 @@
% probababilistic
\newcommand{\bayesrulek}[1][k]{\frac{\P(\xv | y= #1) \P(y= #1)}{\P(\xv)}} % Bayes rule
\newcommand{\muk}[1][k]{\bm{\mu_{#1}}} % mean vector of class-k Gaussian (discr analysis)
\newcommand{\mukh}[1][k]{\bm{\hat{\mu}_{#1}}} % estimated mean vector of class-k Gaussian (discr analysis)

% residual and margin
\newcommand{\eps}{\epsilon} % residual, stochastic
Expand All @@ -158,10 +161,12 @@
\newcommand{\Lxyit}{L\left(\yi, \fxit\right)} % loss of observation with f parameterized
\newcommand{\Lxym}{L\left(\yi, f\left(\bm{\tilde{x}}^{(i)} ~|~ \thetav\right)\right)} % loss of observation with f parameterized
\newcommand{\Lpixy}{L\left(y, \pix\right)} % loss in classification
\newcommand{\Lpiy}{L\left(y, \pi\right)} % loss in classification
\newcommand{\Lpiv}{L\left(y, \piv\right)} % loss in classification
\newcommand{\Lpixyi}{L\left(\yi, \pixii\right)} % loss of observation in classification
\newcommand{\Lpixyt}{L\left(y, \pixt\right)} % loss with pi parameterized
\newcommand{\Lpixyit}{L\left(\yi, \pixit\right)} % loss of observation with pi parameterized
\newcommand{\Lhy}{L\left(y, h\right)} % L(y, h), loss function on discrete classes
\newcommand{\Lhxy}{L\left(y, \hx\right)} % L(y, h(x)), loss function on discrete classes
\newcommand{\Lr}{L\left(r\right)} % L(r), loss defined on residual (reg) / margin (classif)
\newcommand{\lone}{|y - \fx|} % L1 loss
Expand Down

0 comments on commit 301e9a9

Please sign in to comment.