Foundations of Convolutional Neural Networks, deeplearning.ai coursera course
Introduction to Convolution, pooling and paddnig.
-
Familiar formula: conv layer output size = (n + 2*p - k)/s + 1
-
Number of params in ten 3x3x3 filtres: (3x3x3 + 1[bais]) x 10 = 280
Assignment 1: Implement conv layer in numpy (forward/backward)
Assignment 2: Intro. to TensoeFlow
ResNet
- Residual block: [image to be updated]
- Why it works? Skip-connection make NNs easy to learn. Prevent gradient vanishing.
Inception
- Bottleneck layer: Apply 1x1 conv to shrink channle size
- Concatenate output of diffeernt conv routes
Assignment 1: Intro. to Keras
Input(shape=...)
=>[Conv2D/BN/ReLU]
x N =>model=Model(input, output)
=>mdoel.compile(...)
=>model.fit(...)
Assignmnet 2: ResNet50
convolution_block
: A block that reduces dimnesion by 2 using stride2 Conv2Didentity_block
: Con2D/BN/ReLU => Conv2D/BN => Add => ReLU