Skip to content

Commit

Permalink
Allow construct elliptic curve given period_lattice
Browse files Browse the repository at this point in the history
  • Loading branch information
user202729 committed Nov 12, 2024
1 parent 8923ec9 commit 6243ff5
Showing 1 changed file with 100 additions and 0 deletions.
100 changes: 100 additions & 0 deletions src/sage/schemes/elliptic_curves/constructor.py
Original file line number Diff line number Diff line change
Expand Up @@ -524,6 +524,106 @@ def create_object(self, version, key, *, names=None, **kwds):
from .ell_generic import EllipticCurve_generic
return EllipticCurve_generic(R, x)

@staticmethod
def _eisenstein_series_e_eval(weight, tau, prec):
r"""
Private method to evaluate `E_{2k}`. To be merged with modular form code later.
INPUT:
- prec -- precision in bits
OUTPUT:
Element of ``ComplexField(prec)`` equal to `E_{2k}(\tau)` where ``2k == weight``.
TESTS:
Example values::
sage: tau = CC(2/3*I+4/5)
sage: weight = 6
Evaluating using our method::
sage: EllipticCurve._eisenstein_series_e_eval(weight, tau, 53) # abs tol 1e-10
2.06948373064822 + 9.23822630732235*I
Approximately evaluate using convergent sum::
sage: sum((a+b*tau)^-weight for a in (-50..50) for b in (-50..50) if gcd(a, b)==1)/2 # abs tol 1e-10
2.06948373572619 + 9.23822632418512*I
Approximately evaluate using `q`-expansion::
sage: M4 = EisensteinForms(Gamma0(1), weight=weight)
sage: e4 = M4.0
sage: e4.qexp(prec=50).polynomial()(exp(2*pi*I * tau).n(200)) # abs tol 1e-60
2.0694837306482189422343628966349567015465461257928410093613 + 9.2382263073223530637169893909058439360384065238856673719976*I
Higher precision::
sage: EllipticCurve._eisenstein_series_e_eval(weight, tau, 200) # abs tol 1e-60
2.0694837306482189422343628966349567015465461257928410093613 + 9.2382263073223530637169893909058439360384065238856673719976*I
"""
from sage.libs.pari.all import pari
from sage.rings.complex_mpfr import ComplexField
mf = pari.mfinit([1,weight],3)
[f] = pari.mfbasis(mf)
old_prec = pari.get_real_precision_bits()
pari.set_real_precision_bits(prec)
F = ComplexField(prec)
result = pari.mfeval(mf, f, F(tau), precision=prec)/pari.mfcoef(f, 0)
# for some reason precision=prec passed above doesn't work, thus need pari.set_real_precision_bits(prec)
pari.set_real_precision_bits(old_prec)
return F(result)

@staticmethod
def _eisenstein_series_g_eval(weight, tau, prec):
r"""
Similar to :meth:`_eisenstein_series_e_eval`, but evaluates `G_{2k}`.
TESTS::
sage: tau = CC(2/3*I+4/5)
sage: weight = 6
sage: EllipticCurve._eisenstein_series_g_eval(weight, tau, 53) # abs tol 1e-10
4.21074983052932 + 18.7968908775932*I
"""
from sage.functions.transcendental import zeta
e = EllipticCurve._eisenstein_series_e_eval(weight, tau, prec)
return e.parent()(zeta(weight) * 2 * e)

@staticmethod
def from_period_lattice_basis(w1, w2):
r"""
Construct an elliptic curve from a period lattice basis.
INPUT:
- ``w1``, ``w2`` -- basis elements, must be element of ``ComplexField(prec)`` for some ``prec``
OUTPUT:
``EllipticCurve`` instance with base ring ``ComplexField(prec)``
EXAMPLES::
sage: F = ComplexField(53)
sage: w1 = F(1)
sage: w2 = F(I * sqrt(7))
sage: E = EllipticCurve.from_period_lattice_basis(w1, w2)
sage: E.period_lattice().basis() # abs tol 1e-10
(-2.64575131106483*I, -1.00000000000000)
"""
F = w1.parent()
if F != w2.parent():
raise ValueError("basis elements must have the same parent")
prec = F.precision()
tau = w2/w1
g2 = -60*EllipticCurve._eisenstein_series_g_eval(4, tau, prec)/w1**4
g3 = -140*EllipticCurve._eisenstein_series_g_eval(6, tau, prec)/w1**6
return EllipticCurve(F, [(g2/4).real(), (g3/4).real()])

EllipticCurve = EllipticCurveFactory('sage.schemes.elliptic_curves.constructor.EllipticCurve')

Expand Down

0 comments on commit 6243ff5

Please sign in to comment.