Implement the Tor algebra for matroids #17978
Annotations
7 errors and 5 warnings
Failed example::
src/sage/matroids/tor_algebra.py#L38
Failed example:: Got: {((), ()): 0, (('g',), ()): 1, (('a',), ()): 2, (('f',), ()): 3, (('b',), ()): 4, (('d',), ()): 5, (('c',), ()): 6, (('e',), ()): 7, (('h',), ()): 8, (('g', 'a'), ()): 9, (('g', 'f'), ()): 10, (('g', 'b'), ()): 11, (('g', 'd'), ()): 12, (('g', 'c'), ()): 13, (('g', 'e'), ()): 14, (('g', 'h'), ()): 15, (('a', 'f'), ()): 16, (('a', 'b'), ()): 17, (('a', 'd'), ()): 18, (('a', 'c'), ()): 19, (('a', 'e'), ()): 20, (('a', 'h'), ()): 21, (('f', 'b'), ()): 22, (('f', 'd'), ()): 23, (('f', 'c'), ()): 24, (('f', 'e'), ()): 25, (('f', 'h'), ()): 26, (('b', 'd'), ()): 27, (('b', 'c'), ()): 28, (('b', 'e'), ()): 29, (('b', 'h'), ()): 30, (('d', 'c'), ()): 31, (('d', 'e'), ()): 32, (('d', 'h'), ()): 33, (('c', 'e'), ()): 34, (('c', 'h'), ()): 35, (('e', 'h'), ()): 36, (('g', 'a', 'f'), ()): 37, (('g', 'a', 'b'), ()): 38, (('g', 'a', 'd'), ()): 39, (('g', 'a', 'c'), ()): 40, (('g', 'a', 'e'), ()): 41, (('g', 'a', 'h'), ()): 42, (('g', 'f', 'b'), ()): 43, (('g', 'f', 'd'), ()): 44, (('g', 'f', 'c'), ()): 45, (('g', 'f', 'e'), ()): 46, (('g', 'f', 'h'), ()): 47, (('g', 'b', 'd'), ()): 48, (('g', 'b', 'c'), ()): 49, (('g', 'b', 'e'), ()): 50, (('g', 'b', 'h'), ()): 51, (('g', 'd', 'c'), ()): 52, (('g', 'd', 'e'), ()): 53, (('g', 'd', 'h'), ()): 54, (('g', 'c', 'e'), ()): 55, (('g', 'c', 'h'), ()): 56, (('g', 'e', 'h'), ()): 57, (('a', 'f', 'b'), ()): 58, (('a', 'f', 'd'), ()): 59, (('a', 'f', 'c'), ()): 60, (('a', 'f', 'e'), ()): 61, (('a', 'f', 'h'), ()): 62, (('a', 'b', 'd'), ()): 63, (('a', 'b', 'c'), ()): 64, (('a', 'b', 'e'), ()): 65, (('a', 'b', 'h'), ()): 66, (('a', 'd', 'c'), ()): 67, (('a', 'd', 'e'), ()): 68, (('a', 'd', 'h'), ()): 69, (('a', 'c', 'e'), ()): 70, (('a', 'c', 'h'), ()): 71, (('a', 'e', 'h'), ()): 72, (('f', 'b', 'd'), ()): 73, (('f', 'b', 'c'), ()): 74, (('f', 'b', 'e'), ()): 75, (('f', 'b', 'h'), ()): 76, (('f', 'd', 'c'), ()): 77, (('f', 'd', 'e'), ()): 78, (('f', 'd', 'h'), ()): 79, (('f', 'c', 'e'), ()): 80, (('f', 'c', 'h'), ()): 81, (('f', 'e', 'h'), ()): 82, (('b', 'd', 'c'), ()): 83, (('b', 'd', 'e'), ()): 84, (('b', 'd', 'h'), ()): 85, (('b', 'c', 'e'), ()): 86, (('b', 'c', 'h'), ()): 87, (('b', 'e', 'h'), ()): 88, (('d', 'c', 'e'), ()): 89, (('d', 'c', 'h'), ()): 90, (('d', 'e', 'h'), ()): 91, (('c', 'e', 'h'), ()): 92, (('g', 'a', 'd', 'e'), ()): 93, (('g', 'a', 'c', 'h'), ()): 94, (('g', 'f', 'b', 'd'), ()): 95, (('g', 'b', 'c', 'e'), ()): 96, (('a', 'f', 'b', 'h'), ()): 97, (('a', 'f', 'c', 'e'), ()): 98, (('f', 'd', 'c', 'h'), ()): 99, (('b', 'd', 'e', 'h'), ()): 100}
{((), ('g',)): 0, ((), ('a',)): 1, ((), ('f',)): 2, ((), ('b',)): 3, ((), ('d',)): 4, ((), ('c',)): 5, ((), ('e',)): 6, (('g',), ('a',)): 7, (('g',), ('f',)): 8, (('g',), ('b',)): 9, (('g',), ('d',)): 10, (('g',), ('c',)): 11, (('g',), ('e',)): 12, (('a',), ('g',)): 13, (('a',), ('f',)): 14, (('a',), ('b',)): 15, (('a',), ('d',)): 16, (('a',), ('c',)): 17, (('a',), ('e',)): 18, (('f',), ('g',)): 19, (('f',), ('a',)): 20, (('f',), ('b',)): 21, (('f',), ('d',)): 22, (('f',), ('c',)): 23, (('f',), ('e',)): 24, (('b',), ('g',)): 25, (('b',), ('a',)): 26, (('b',), ('f',)): 27, (('b',), ('d',)): 28, (('b',), ('c',)): 29, (('b',), ('e',)): 30, (('d',), ('g',)): 31, (('d',), ('a',)): 32, (('d',), ('f',)): 33, (('d',), ('b',)): 34, (('d',), ('c',)): 35, (('d',), ('e',)): 36, (('c',), ('g',)): 37, (('c',), ('a',)): 38, (('c',), ('f',)): 39, (('c',), ('b',)): 40, (('c',), ('d',)): 41, (('c',), ('e',)): 42, (('e',), ('g',)): 43, (('e',), ('a',)): 44, (('e',), ('f',)): 45, (('e',), ('b',)): 46, (('e',), ('d',)): 47, (('e',), ('c',)): 48, (('h',), ('g',)): 49, (('h',), ('a',)): 50, (('h',), ('f',)): 51, (('h',), ('b',)): 52, (('h',), ('d',)): 53, (('h',), ('c',)): 54, (('g', 'a'), ('f',)): 55, (('g', 'a'), ('b',)): 56, (('g', 'a'), ('d',)): 57, (('g', 'a'), ('c',)): 58, (('g', 'a'), ('e',)): 59, (('g', 'f'), ('a',)): 60, (('g', 'f'), ('b',)): 61, (('g', 'f'), ('d',)): 62, (('g', 'f'), ('c',)): 63, (('g', 'f'), ('e',)): 64, (('g', 'b'), ('a',)): 65, (('g', 'b'), ('f',)): 66, (('g', 'b'), ('d',)): 67, (('g', 'b'), ('c',)): 68, (('
|
Failed example::
src/sage/matroids/tor_algebra.py#L39
Failed example:: Got: Tor algebra of P8'': Matroid of rank 4 on 8 elements with 8 nonspanning circuits over Rational Field
|
Failed example::
src/sage/matroids/tor_algebra.py#L47
Failed example:: Got: {((), ()): 0, ((0,), ()): 1, ((1,), ()): 2, ((2,), ()): 3, ((3,), ()): 4, ((4,), ()): 5, ((5,), ()): 6, ((0, 1), ()): 7, ((0, 2), ()): 8, ((0, 3), ()): 9, ((0, 4), ()): 10, ((0, 5), ()): 11, ((1, 2), ()): 12, ((1, 3), ()): 13, ((1, 4), ()): 14, ((1, 5), ()): 15, ((2, 3), ()): 16, ((2, 4), ()): 17, ((2, 5), ()): 18, ((3, 4), ()): 19, ((3, 5), ()): 20, ((4, 5), ()): 21, ((0, 1, 3), ()): 22, ((0, 2, 5), ()): 23, ((1, 2, 4), ()): 24, ((3, 4, 5), ()): 25}
{((), (0,)): 0, ((), (1,)): 1, ((), (2,)): 2, ((), (3,)): 3, ((), (4,)): 4, ((0,), (1,)): 5, ((0,), (2,)): 6, ((0,), (3,)): 7, ((0,), (4,)): 8, ((1,), (0,)): 9, ((1,), (2,)): 10, ((1,), (3,)): 11, ((1,), (4,)): 12, ((2,), (0,)): 13, ((2,), (1,)): 14, ((2,), (3,)): 15, ((2,), (4,)): 16, ((3,), (0,)): 17, ((3,), (1,)): 18, ((3,), (2,)): 19, ((3,), (4,)): 20, ((4,), (0,)): 21, ((4,), (1,)): 22, ((4,), (2,)): 23, ((4,), (3,)): 24, ((5,), (0,)): 25, ((5,), (1,)): 26, ((5,), (2,)): 27, ((5,), (3,)): 28, ((0, 1), (2,)): 29, ((0, 1), (3,)): 30, ((0, 1), (4,)): 31, ((0, 2), (1,)): 32, ((0, 2), (3,)): 33, ((0, 2), (4,)): 34, ((0, 3), (1,)): 35, ((0, 3), (2,)): 36, ((0, 3), (4,)): 37, ((0, 4), (1,)): 38, ((0, 4), (2,)): 39, ((0, 4), (3,)): 40, ((0, 5), (1,)): 41, ((0, 5), (2,)): 42, ((0, 5), (3,)): 43, ((1, 2), (0,)): 44, ((1, 2), (3,)): 45, ((1, 2), (4,)): 46, ((1, 3), (0,)): 47, ((1, 3), (2,)): 48, ((1, 3), (4,)): 49, ((1, 4), (0,)): 50, ((1, 4), (2,)): 51, ((1, 4), (3,)): 52, ((1, 5), (0,)): 53, ((1, 5), (2,)): 54, ((1, 5), (3,)): 55, ((2, 3), (0,)): 56, ((2, 3), (1,)): 57, ((2, 3), (4,)): 58, ((2, 4), (0,)): 59, ((2, 4), (1,)): 60, ((2, 4), (3,)): 61, ((2, 5), (0,)): 62, ((2, 5), (1,)): 63, ((2, 5), (3,)): 64, ((3, 4), (0,)): 65, ((3, 4), (1,)): 66, ((3, 4), (2,)): 67, ((3, 5), (0,)): 68, ((3, 5), (1,)): 69, ((3, 5), (2,)): 70, ((4, 5), (0,)): 71, ((4, 5), (1,)): 72, ((4, 5), (2,)): 73, ((0, 1, 3), (2,)): 74, ((0, 1, 3), (4,)): 75, ((0, 2, 5), (1,)): 76, ((0, 2, 5), (3,)): 77, ((1, 2, 4), (0,)): 78, ((1, 2, 4), (3,)): 79, ((3, 4, 5), (0,)): 80, ((3, 4, 5), (1,)): 81}
{((), (0, 1)): 0, ((), (0, 2)): 1, ((), (0, 3)): 2, ((), (0, 4)): 3, ((), (1, 2)): 4, ((), (1, 3)): 5, ((), (1, 4)): 6, ((), (2, 3)): 7, ((), (2, 4)): 8, ((), (3, 4)): 9, ((0,), (1, 2)): 10, ((0,), (1, 3)): 11, ((0,), (1, 4)): 12, ((0,), (2, 3)): 13, ((0,), (2, 4)): 14, ((0,), (3, 4)): 15, ((1,), (0, 2)): 16, ((1,), (0, 3)): 17, ((1,), (0, 4)): 18, ((1,), (2, 3)): 19, ((1,), (2, 4)): 20, ((1,), (3, 4)): 21, ((2,), (0, 1)): 22, ((2,), (0, 3)): 23, ((2,), (0, 4)): 24, ((2,), (1, 3)): 25, ((2,), (1, 4)): 26, ((2,), (3, 4)): 27, ((3,), (0, 1)): 28, ((3,), (0, 2)): 29, ((3,), (0, 4)): 30, ((3,), (1, 2)): 31, ((3,), (1, 4)): 32, ((3,), (2, 4)): 33, ((4,), (0, 1)): 34, ((4,), (0, 2)): 35, ((4,), (0, 3)): 36, ((4,), (1, 2)): 37, ((4,), (1, 3)): 38, ((4,), (2, 3)): 39, ((5,), (0, 1)): 40, ((5,), (0, 2)): 41, ((5,), (0, 3)): 42, ((5,), (1, 2)): 43, ((5,), (1, 3)): 44, ((5,), (2, 3)): 45, ((0, 1), (2, 3)): 46, ((0, 1), (2, 4)): 47, ((0, 1), (3, 4)): 48, ((0, 2), (1, 3)): 49, ((0, 2), (1, 4)): 50, ((0, 2), (3, 4)): 51, ((0, 3), (1, 2)): 52, ((0, 3), (1, 4)): 53, ((0, 3), (2, 4)): 54, ((0, 4), (1, 2)): 55, ((0, 4), (1, 3)): 56, ((0, 4), (2, 3)): 57, ((0, 5), (1, 2)): 58, ((0, 5), (1, 3)): 59, ((0, 5), (2, 3)): 60, ((1, 2), (0, 3)): 61, ((1, 2), (0, 4)): 62, ((1, 2), (3, 4)): 63, ((1, 3), (0, 2)): 64, ((1, 3), (0, 4)): 65, ((1, 3), (2, 4)): 66, ((1, 4), (0, 2)): 67, ((1, 4), (0, 3)): 68, ((1, 4), (2, 3)): 69, ((1, 5), (0, 2)): 70, ((1, 5), (0, 3)): 71, ((1, 5), (2, 3)): 72, ((2, 3), (0, 1)): 73, ((2, 3), (0, 4)): 74, ((2, 3), (1, 4)): 75, ((2, 4), (0, 1)): 76, ((2, 4), (0, 3)): 77, ((2, 4), (1, 3)): 78, ((2, 5), (0, 1)): 79, ((2, 5), (0, 3)): 80, ((2, 5), (1, 3)): 81, ((3, 4), (0, 1)): 82, ((3, 4), (0, 2)): 83, ((3, 4), (1, 2)): 84, ((3, 5), (0, 1)): 85, ((3, 5), (0, 2)): 86, ((3, 5), (1, 2)): 87, ((4, 5), (0, 1)): 88, ((4, 5), (0, 2)): 89, ((4, 5), (1, 2)): 90, ((0, 1, 3), (2, 4)): 91, ((0, 2, 5), (1, 3)): 92, ((1, 2, 4), (0, 3)): 93, ((3, 4, 5), (0, 1)): 94}
{((), (0, 1, 2)): 0, ((), (0, 1, 3)): 1, ((), (0, 1
|
Failed example::
src/sage/matroids/tor_algebra.py#L48
Failed example:: Got: Failure in _test_associativity:
Traceback (most recent call last):
File "/sage/src/sage/misc/sage_unittest.py", line 298, in run
test_method(tester=tester)
File "/sage/src/sage/categories/semigroups.py", line 121, in _test_associativity
tester.assertEqual((x * y) * z, x * (y * z))
File "sage/structure/element.pyx", line 1505, in sage.structure.element.Element.__mul__
return (<Element>left)._mul_(right)
File "sage/structure/element.pyx", line 1551, in sage.structure.element.Element._mul_
return python_op(other)
TypeError: 'NotImplementedType' object is not callable
------------------------------------------------------------
Failure in _test_distributivity:
Traceback (most recent call last):
File "/sage/src/sage/misc/sage_unittest.py", line 298, in run
test_method(tester=tester)
File "/sage/src/sage/categories/distributive_magmas_and_additive_magmas.py", line 81, in _test_distributivity
tester.assertEqual(x * (y + z), (x * y) + (x * z))
File "sage/structure/element.pyx", line 1505, in sage.structure.element.Element.__mul__
return (<Element>left)._mul_(right)
File "sage/structure/element.pyx", line 1551, in sage.structure.element.Element._mul_
return python_op(other)
TypeError: 'NotImplementedType' object is not callable
------------------------------------------------------------
Failure in _test_elements_eq_symmetric:
Traceback (most recent call last):
File "/sage/src/sage/misc/sage_unittest.py", line 298, in run
test_method(tester=tester)
File "/sage/src/sage/categories/sets_cat.py", line 1250, in _test_elements_eq_symmetric
tester.assertEqual(x == y, y == x,
File "sage/structure/element.pyx", line 1099, in sage.structure.element.Element.__richcmp__
return coercion_model.richcmp(self, other, op)
File "sage/structure/coerce.pyx", line 2023, in sage.structure.coerce.CoercionModel.richcmp
x, y = self.canonical_coercion(x, y)
File "sage/structure/coerce.pyx", line 1350, in sage.structure.coerce.CoercionModel.canonical_coercion
y_elt = (<Map>y_map)._call_(y)
File "sage/categories/map.pyx", line 1734, in sage.categories.map.FormalCompositeMap._call_
x = f._call_(x)
File "sage/categories/morphism.pyx", line 593, in sage.categories.morphism.SetMorphism._call_
cpdef Element _call_(self, x):
File "sage/categories/morphism.pyx", line 612, in sage.categories.morphism.SetMorphism._call_
return self._function(x)
File "/sage/src/sage/categories/unital_algebras.py", line 72, in from_base_ring
return self.one()._lmul_(r)
File "sage/misc/cachefunc.pyx", line 2318, in sage.misc.cachefunc.CachedMethodCallerNoArgs.__call__
self.cache = f(self._instance)
File "/sage/src/sage/categories/magmas.py", line 497, in one
return self(1)
File "sage/structure/parent.pyx", line 901, in sage.structure.parent.Parent.__call__
return mor._call_(x)
File "sage/categories/map.pyx", line 1734, in sage.categories.map.FormalCompositeMap._call_
x = f._call_(x)
File "sage/categories/morphism.pyx", line 593, in sage.categories.morphism.SetMorphism._call_
cpdef Element _call_(self, x):
File "sage/categories/morphism.pyx", line 612, in sage.categories.morphism.SetMorphism._call_
return self._function(x)
File "/sage/src/sage/categories/unital_algebras.py", line 72, in from_base_ring
return self.one()._lmul_(r)
File "sage/misc/cachefunc.pyx", line 2318, in sage.misc.cachefunc.CachedMethodCallerNoArgs.__call__
self.cache = f(self._instance)
File "/sage/src/sage/categories/magmas.py", line 497, in one
return self(1)
File "sage/structure/parent.pyx", line 901, in sage.structure.parent.Parent.__call__
return mor._call_(x)
File "sage/categories/map.pyx", line 1734, in sage.categories.map.FormalCompositeMap._call_
x = f._call_(x)
File "sage/categories/morphism.pyx", line 593, in sage.categories.morphism.SetMorphism._call_
cpdef Element _call_(self, x):
File "sage/categories/morphism.pyx", line 612, in sage.categories.morphism.SetMorphism._call_
return self._function(x)
File
|
Failed example::
src/sage/topology/simplicial_complex.py#L3539
Failed example:: Got: {frozenset(): 0,
frozenset({'a'}): 1,
frozenset({'b', 'c', 'd'}): 2,
frozenset({'a', 'b', 'f'}): 3,
frozenset({'a', 'c', 'e'}): 4,
frozenset({'d', 'e', 'f'}): 5,
frozenset({'c'}): 6,
frozenset({'b'}): 7,
frozenset({'g'}): 8,
frozenset({'b', 'e', 'g'}): 9,
frozenset({'d'}): 10,
frozenset({'a', 'd', 'g'}): 11,
frozenset({'f'}): 12,
frozenset({'c', 'f', 'g'}): 13,
frozenset({'e'}): 14,
frozenset({'a', 'b', 'c', 'd', 'e', 'f', 'g'}): 15}
|
test-new
Process completed with exit code 1.
|
coverage-report
Process completed with exit code 1.
|
test-new
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
test-new
The process '/usr/bin/git' failed with exit code 128
|
test-new
fatal: no submodule mapping found in .gitmodules for path 'subprojects/factory'
|
coverage-report
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
coverage-report
The process '/usr/bin/git' failed with exit code 128
|
Artifacts
Produced during runtime
Name | Size | |
---|---|---|
sagemath~sage~MXDZ0G.dockerbuild
|
114 KB |
|
sagemath~sage~RZWNIS.dockerbuild
|
123 KB |
|