Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Split models #45

Open
wants to merge 12 commits into
base: master
Choose a base branch
from
192 changes: 96 additions & 96 deletions seirsplus/FARZ.py

Large diffs are not rendered by default.

468 changes: 234 additions & 234 deletions seirsplus/legacy_models.py

Large diffs are not rendered by default.

3,227 changes: 0 additions & 3,227 deletions seirsplus/models.py

This file was deleted.

5 changes: 5 additions & 0 deletions seirsplus/models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
"""SEIRS and extended SEIRS models."""

from .extended_seirs_network_model import ExtSEIRSNetworkModel
from .seirs_model import SEIRSModel
from .seirs_network_model import SEIRSNetworkModel
262 changes: 262 additions & 0 deletions seirsplus/models/base_plotable_model.py

Large diffs are not rendered by default.

1,563 changes: 1,563 additions & 0 deletions seirsplus/models/extended_seirs_network_model.py

Large diffs are not rendered by default.

268 changes: 268 additions & 0 deletions seirsplus/models/seirs_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy
import scipy.integrate

from .base_plotable_model import BasePlotableModel


class SEIRSModel(BasePlotableModel):
"""
A class to simulate the Deterministic SEIRS Model
===================================================
Params: beta Rate of transmission (exposure)
sigma Rate of infection (upon exposure)
gamma Rate of recovery (upon infection)
xi Rate of re-susceptibility (upon recovery)
mu_I Rate of infection-related death
mu_0 Rate of baseline death
nu Rate of baseline birth

beta_Q Rate of transmission (exposure) for individuals with detected infections
sigma_Q Rate of infection (upon exposure) for individuals with detected infections
gamma_Q Rate of recovery (upon infection) for individuals with detected infections
mu_Q Rate of infection-related death for individuals with detected infections
theta_E Rate of baseline testing for exposed individuals
theta_I Rate of baseline testing for infectious individuals
psi_E Probability of positive test results for exposed individuals
psi_I Probability of positive test results for exposed individuals
q Probability of quarantined individuals interacting with others

initE Init number of exposed individuals
initI Init number of infectious individuals
initQ_E Init number of detected infectious individuals
initQ_I Init number of detected infectious individuals
initR Init number of recovered individuals
initF Init number of infection-related fatalities
(all remaining nodes initialized susceptible)
"""

plotting_number_property = 'N'
"""Property to access the number to base plotting on."""


def __init__(self, initN, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, p=0,
beta_Q=None, sigma_Q=None, gamma_Q=None, mu_Q=None,
theta_E=0, theta_I=0, psi_E=0, psi_I=0, q=0,
initE=0, initI=10, initQ_E=0, initQ_I=0, initR=0, initF=0):

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Model Parameters:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
self.beta = beta
self.sigma = sigma
self.gamma = gamma
self.xi = xi
self.mu_I = mu_I
self.mu_0 = mu_0
self.nu = nu
self.p = p

# Testing-related parameters:
self.beta_Q = beta_Q if beta_Q is not None else self.beta
self.sigma_Q = sigma_Q if sigma_Q is not None else self.sigma
self.gamma_Q = gamma_Q if gamma_Q is not None else self.gamma
self.mu_Q = mu_Q if mu_Q is not None else self.mu_I
self.theta_E = theta_E if theta_E is not None else self.theta_E
self.theta_I = theta_I if theta_I is not None else self.theta_I
self.psi_E = psi_E if psi_E is not None else self.psi_E
self.psi_I = psi_I if psi_I is not None else self.psi_I
self.q = q if q is not None else self.q

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize Timekeeping:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
self.t = 0
self.tmax = 0 # will be set when run() is called
self.tseries = numpy.array([0])

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize Counts of inidividuals with each state:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
self.N = numpy.array([int(initN)])
self.numE = numpy.array([int(initE)])
self.numI = numpy.array([int(initI)])
self.numQ_E = numpy.array([int(initQ_E)])
self.numQ_I = numpy.array([int(initQ_I)])
self.numR = numpy.array([int(initR)])
self.numF = numpy.array([int(initF)])
self.numS = numpy.array([self.N[-1] - self.numE[-1] - self.numI[-1] - self.numQ_E[-1] - self.numQ_I[-1] - self.numR[-1] - self.numF[-1]])
assert(self.numS[0] >= 0), "The specified initial population size N must be greater than or equal to the initial compartment counts."


#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

@staticmethod
def system_dfes(t, variables, beta, sigma, gamma, xi, mu_I, mu_0, nu,
beta_Q, sigma_Q, gamma_Q, mu_Q, theta_E, theta_I, psi_E, psi_I, q):

S, E, I, Q_E, Q_I, R, F = variables # variables is a list with compartment counts as elements

N = S + E + I + Q_E + Q_I + R

dS = - (beta*S*I)/N - q*(beta_Q*S*Q_I)/N + xi*R + nu*N - mu_0*S

dE = (beta*S*I)/N + q*(beta_Q*S*Q_I)/N - sigma*E - theta_E*psi_E*E - mu_0*E

dI = sigma*E - gamma*I - mu_I*I - theta_I*psi_I*I - mu_0*I

dDE = theta_E*psi_E*E - sigma_Q*Q_E - mu_0*Q_E

dDI = theta_I*psi_I*I + sigma_Q*Q_E - gamma_Q*Q_I - mu_Q*Q_I - mu_0*Q_I

dR = gamma*I + gamma_Q*Q_I - xi*R - mu_0*R

dF = mu_I*I + mu_Q*Q_I

return [dS, dE, dI, dDE, dDI, dR, dF]


#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

def run_epoch(self, runtime, dt=0.1):

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create a list of times at which the ODE solver should output system values.
# Append this list of times as the model's time series
t_eval = numpy.arange(start=self.t, stop=self.t+runtime, step=dt)

# Define the range of time values for the integration:
t_span = [self.t, self.t+runtime]

# Define the initial conditions as the system's current state:
# (which will be the t=0 condition if this is the first run of this model,
# else where the last sim left off)

init_cond = [self.numS[-1], self.numE[-1], self.numI[-1], self.numQ_E[-1], self.numQ_I[-1], self.numR[-1], self.numF[-1]]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Solve the system of differential eqns:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
solution = scipy.integrate.solve_ivp(lambda t, X: SEIRSModel.system_dfes(t, X, self.beta, self.sigma, self.gamma, self.xi, self.mu_I, self.mu_0, self.nu,
self.beta_Q, self.sigma_Q, self.gamma_Q, self.mu_Q, self.theta_E, self.theta_I, self.psi_E, self.psi_I, self.q
),
t_span=t_span, y0=init_cond, t_eval=t_eval
)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Store the solution output as the model's time series and data series:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
self.tseries = numpy.append(self.tseries, solution['t'])
self.numS = numpy.append(self.numS, solution['y'][0])
self.numE = numpy.append(self.numE, solution['y'][1])
self.numI = numpy.append(self.numI, solution['y'][2])
self.numQ_E = numpy.append(self.numQ_E, solution['y'][3])
self.numQ_I = numpy.append(self.numQ_I, solution['y'][4])
self.numR = numpy.append(self.numR, solution['y'][5])
self.numF = numpy.append(self.numF, solution['y'][6])

self.t = self.tseries[-1]


#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

def run(self, T, dt=0.1, checkpoints=None, verbose=False):

if T > 0:
self.tmax += T
else:
return False

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Pre-process checkpoint values:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if checkpoints:
numCheckpoints = len(checkpoints['t'])
paramNames = ['beta', 'sigma', 'gamma', 'xi', 'mu_I', 'mu_0', 'nu',
'beta_Q', 'sigma_Q', 'gamma_Q', 'mu_Q',
'theta_E', 'theta_I', 'psi_E', 'psi_I', 'q']
for param in paramNames:
# For params that don't have given checkpoint values (or bad value given),
# set their checkpoint values to the value they have now for all checkpoints.
if (param not in list(checkpoints.keys())
or not isinstance(checkpoints[param], (list, numpy.ndarray))
or len(checkpoints[param])!=numCheckpoints):
checkpoints[param] = [getattr(self, param)]*numCheckpoints

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Run the simulation loop:
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if not checkpoints:
self.run_epoch(runtime=self.tmax, dt=dt)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

print("t = %.2f" % self.t)
if verbose:
print("\t S = " + str(self.numS[-1]))
print("\t E = " + str(self.numE[-1]))
print("\t I = " + str(self.numI[-1]))
print("\t Q_E = " + str(self.numQ_E[-1]))
print("\t Q_I = " + str(self.numQ_I[-1]))
print("\t R = " + str(self.numR[-1]))
print("\t F = " + str(self.numF[-1]))


else: # checkpoints provided
for checkpointIdx, checkpointTime in enumerate(checkpoints['t']):
# Run the sim until the next checkpoint time:
self.run_epoch(runtime=checkpointTime-self.t, dt=dt)
# Having reached the checkpoint, update applicable parameters:
print("[Checkpoint: Updating parameters]")
for param in paramNames:
setattr(self, param, checkpoints[param][checkpointIdx])

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

print("t = %.2f" % self.t)
if verbose:
print("\t S = " + str(self.numS[-1]))
print("\t E = " + str(self.numE[-1]))
print("\t I = " + str(self.numI[-1]))
print("\t Q_E = " + str(self.numQ_E[-1]))
print("\t Q_I = " + str(self.numQ_I[-1]))
print("\t R = " + str(self.numR[-1]))
print("\t F = " + str(self.numF[-1]))

if self.t < self.tmax:
self.run_epoch(runtime=self.tmax-self.t, dt=dt)

return True

#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

def total_num_susceptible(self, t_idx=None):
if t_idx is None:
return self.numS[:]
else:
return self.numS[t_idx]

#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

def total_num_infected(self, t_idx=None):
if t_idx is None:
return self.numE[:] + self.numI[:] + self.numQ_E[:] + self.numQ_I[:]
else:
return self.numE[t_idx] + self.numI[t_idx] + self.numQ_E[t_idx] + self.numQ_I[t_idx]

#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

def total_num_isolated(self, t_idx=None):
if t_idx is None:
return self.numQ_E[:] + self.numQ_I[:]
else:
return self.numQ_E[t_idx] + self.numQ_I[t_idx]

#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

def total_num_recovered(self, t_idx=None):
if t_idx is None:
return self.numR[:]
else:
return self.numR[t_idx]
Loading