Skip to content

Commit

Permalink
Add bipartite bc
Browse files Browse the repository at this point in the history
  • Loading branch information
nv-rliu committed Nov 18, 2024
1 parent 3eb6afc commit 0c0b90d
Show file tree
Hide file tree
Showing 4 changed files with 69 additions and 0 deletions.
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,8 @@ Below is the list of algorithms that are currently supported in nx-cugraph.

<pre>
<a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite">bipartite</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.centrality">centrality</a>
│ └─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.centrality.betweenness_centrality.html#networkx.algorithms.bipartite.centrality.betweenness_centrality">betweenness_centrality</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.generators">generators</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.generators.complete_bipartite_graph.html#networkx.algorithms.bipartite.generators.complete_bipartite_graph">complete_bipartite_graph</a>
<a href="https://networkx.org/documentation/stable/reference/algorithms/centrality.html#module-networkx.algorithms.centrality">centrality</a>
Expand Down
1 change: 1 addition & 0 deletions _nx_cugraph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@
"bfs_successors",
"bfs_tree",
"bidirectional_shortest_path",
"bipartite_betweenness_centrality",
"bull_graph",
"caveman_graph",
"chvatal_graph",
Expand Down
2 changes: 2 additions & 0 deletions nx_cugraph/algorithms/bipartite/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .centrality import *
from .generators import *
64 changes: 64 additions & 0 deletions nx_cugraph/algorithms/bipartite/centrality.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cupy as cp
import pylibcugraph as plc

from nx_cugraph.convert import _to_graph
from nx_cugraph.utils import networkx_algorithm

__all__ = ["betweenness_centrality"]


@networkx_algorithm(
name="bipartite_betweenness_centrality",
version_added="24.12",
_plc="betweenness_centrality",
)
def betweenness_centrality(G, nodes):
G = _to_graph(G)

node_ids, values = plc.betweenness_centrality(
resource_handle=plc.ResourceHandle(),
graph=G._get_plc_graph(),
k=None,
random_state=None,
normalized=False,
include_endpoints=False,
do_expensive_check=False,
)
top_node_ids = G._nodekeys_to_nodearray(set(nodes))
bottom_node_ids = cp.setdiff1d(
cp.arange(G._N, dtype=top_node_ids.dtype), top_node_ids
)
n = top_node_ids.size
m = bottom_node_ids.size
s, t = divmod(n - 1, m)
bet_max_top = (
((m**2) * ((s + 1) ** 2))
+ (m * (s + 1) * (2 * t - s - 1))
- (t * ((2 * s) - t + 3))
) / 2.0
p, r = divmod(m - 1, n)
bet_max_bot = (
((n**2) * ((p + 1) ** 2))
+ (n * (p + 1) * (2 * r - p - 1))
- (r * ((2 * p) - r + 3))
) / 2.0

values = values[cp.argsort(node_ids)]

values[top_node_ids] /= bet_max_top
values[bottom_node_ids] /= bet_max_bot

return G._nodearray_to_dict(values)

0 comments on commit 0c0b90d

Please sign in to comment.