Skip to content

python-ffmpegio/python-ffmpegio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ffmpegio: Media I/O with FFmpeg in Python

PyPI PyPI - Status PyPI - Python Version GitHub License GitHub Workflow Status

Python ffmpegio package aims to bring the full capability of FFmpeg to read, write, probe, and manipulate multimedia data to Python. FFmpeg is an open-source cross-platform multimedia framework, which can handle most of the multimedia formats available today.

Main Features

  • Pure-Python light-weight package interacting with FFmpeg executable found in your system
  • Read, write, filter, and create functions for audio, image, and video data
  • Context-managing ffmpegio.open to perform stream read/write operations of video and audio
  • Media readers can output the data in a Numpy array (if Numpy is installed) or a plain bytes objects in a dict. The mode of operation can be switched with ffmpegio.use function.
  • Media writers can write a new media file from either data given in a Numpy array or bytes objects in a dict.
  • Write Matplotlib figures to images or to a video (a simpler interface than Matplotlib's Animation writers).
  • Probe media file information
  • Accepts all FFmpeg options including filter graphs
  • Transcode a media file to another in Python
  • Supports a user callback whenever FFmpeg updates its progress information file (see -progress FFmpeg option)
  • ffconcat scripter to make the use of -f concat demuxer easier
  • I/O device enumeration to eliminate the need to look up device names. (currently supports only: Windows DirectShow)
  • More features to follow

Installation

Install the full ffmpegio package via pip:

pip install ffmpegio

Following optional external packages are required to enable the ffmpegio features that interact with them.

Distro package name ffmpegio features Deprecated plugin names
numpy Support Numpy array inputs and outputs intead of bytes ffmpegio
matplotlib Support generation of images or videos from Matplotlib figure ffmpegio-plugin-mpl
ffmepeg-downloader Support the FFmpeg binaries installed by the ffdl command ffmpegio-plugin-downloader
static-ffmpeg Support the FFmpeg binaries installed by static-ffmpeg ffmpegio-plugin-static-ffmpeg

These features are automatically enabled if the external packages are installed along along side with ffmpegio. ffmpegio is imported

Note

Prior to v0.11.0, these features were only enabled via installing separate plugin packages (listed in the table above). ffmpegio v0.11 and ffmpegio-core v0.11 are identical, and ffmpegio-core will no longer receive the updates. For the version upgrade instruction, please read this Wiki entry <https://github.com/python-ffmpegio/python-ffmpegio/wiki/Instructions-to-upgrade-to-v0.11.0>`__

Documentation

Visit our GitHub page here

Examples

To import ffmpegio

>>> import ffmpegio

Transcoding

>>> # transcode, overwrite output file if exists, showing the FFmpeg log
>>> ffmpegio.transcode('input.avi', 'output.mp4', overwrite=True, show_log=True)

>>> # 1-pass H.264 transcoding
>>> ffmpegio.transcode('input.avi', 'output.mkv', vcodec='libx264', show_log=True,
>>>                    preset='slow', crf=22, acodec='copy')

>>> # 2-pass H.264 transcoding
>>> ffmpegio.transcode('input.avi', 'output.mkv', two_pass=True, show_log=True,
>>>                    **{'c:v':'libx264', 'b:v':'2600k', 'c:a':'aac', 'b:a':'128k'})

>>> # concatenate videos using concat demuxer
>>> files = ['/video/video1.mkv','/video/video2.mkv']
>>> ffconcat = ffmpegio.FFConcat()
>>> ffconcat.add_files(files)
>>> with ffconcat: # generates temporary ffconcat file
>>>     ffmpegio.transcode(ffconcat, 'output.mkv', f_in='concat', codec='copy', safe_in=0)

Read Audio Files

>>> # read audio samples in its native sample format and return all channels
>>> fs, x = ffmpegio.audio.read('myaudio.wav')
>>> # fs: sampling rate in samples/second, x: [nsamples x nchannels] numpy array

>>> # read audio samples from 24.15 seconds to 63.2 seconds, pre-convert to mono in float data type
>>> fs, x = ffmpegio.audio.read('myaudio.flac', ss=24.15, to=63.2, sample_fmt='dbl', ac=1)

>>> # read filtered audio samples first 10 seconds
>>> #   filter: equalizer which attenuate 10 dB at 1 kHz with a bandwidth of 200 Hz
>>> fs, x = ffmpegio.audio.read('myaudio.mp3', t=10.0, af='equalizer=f=1000:t=h:width=200:g=-10')

Read Image Files / Capture Video Frames

>>> # list supported image extensions
>>> ffmpegio.caps.muxer_info('image2')['extensions']
['bmp', 'dpx', 'exr', 'jls', 'jpeg', 'jpg', 'ljpg', 'pam', 'pbm', 'pcx', 'pfm', 'pgm', 'pgmyuv',
 'png', 'ppm', 'sgi', 'tga', 'tif', 'tiff', 'jp2', 'j2c', 'j2k', 'xwd', 'sun', 'ras', 'rs', 'im1',
 'im8', 'im24', 'sunras', 'xbm', 'xface', 'pix', 'y']

>>> # read BMP image with auto-detected pixel format (rgb24, gray, rgba, or ya8)
>>> I = ffmpegio.image.read('myimage.bmp') # I: [height x width x ncomp] numpy array

>>> # read JPEG image, then convert to grayscale and proportionally scale so the width is 480 pixels
>>> I = ffmpegio.image.read('myimage.jpg', pix_fmt='grayscale', s='480x-1')

>>> # read PNG image with transparency, convert it to plain RGB by filling transparent pixels orange
>>> I = ffmpegio.image.read('myimage.png', pix_fmt='rgb24', fill_color='orange')

>>> # capture video frame at timestamp=4:25.3 and convert non-square pixels to square
>>> I = ffmpegio.image.read('myvideo.mpg', ss='4:25.3', square_pixels='upscale')

>>> # capture 5 video frames and tile them on 3x2 grid with 7px between them, and 2px of initial margin
>>> I = ffmpegio.image.read('myvideo.mp4', vf='tile=3x2:nb_frames=5:padding=7:margin=2')

>>> # create spectrogram of the audio input (must specify pix_fmt if input is audio)
>>> I = ffmpegio.image.read('myaudio.mp3', filter_complex='showspectrumpic=s=960x540', pix_fmt='rgb24')

Read Video Files

>>> # read 50 video frames at t=00:32:40 then convert to grayscale
>>> fs, F = ffmpegio.video.read('myvideo.mp4', ss='00:32:40', vframes=50, pix_fmt='gray')
>>> #  fs: frame rate in frames/second, F: [nframes x height x width x ncomp] numpy array

>>> # get running spectrogram of audio input (must specify pix_fmt if input is audio)
>>> fs, F = ffmpegio.video.read('myvideo.mp4', pix_fmt='rgb24', filter_complex='showspectrum=s=1280x480')

Read Multiple Files or Streams

>>> # read both video and audio streams (1 ea)
>>> rates, data = ffmpegio.media.read('mymedia.mp4')
>>> #  rates: dict of frame rate and sampling rate: keys="v:0" and "a:0"
>>> #  data: dict of video frame array and audio sample array: keys="v:0" and "a:0"

>>> # combine video and audio files
>>> rates, data = ffmpegio.media.read('myvideo.mp4','myaudio.mp3')

>>> # get output of complex filtergraph (can take multiple inputs)
>>> expr = "[v:0]split=2[out0][l1];[l1]edgedetect[out1]"
>>> rates, data = ffmpegio.media.read('myvideo.mp4',filter_complex=expr,map=['[out0]','[out1]'])
>>> #  rates: dict of frame rates: keys="v:0" and "v:1"
>>> #  data: dict of video frame arrays: keys="v:0" and "v:1"

Write Audio, Image, & Video Files

>>> # create a video file from a numpy array
>>> ffmpegio.video.write('myvideo.mp4', rate, F)

>>> # create an image file from a numpy array
>>> ffmpegio.image.write('myimage.png', F)

>>> # create an audio file from a numpy array
>>> ffmpegio.audio.write('myaudio.mp3', rate, x)

Filter Audio, Image, & Video Data

>>> # Add fade-in and fade-out effects to audio data
>>> fs_out, y = ffmpegio.audio.filter('afade=t=in:ss=0:d=15,afade=t=out:st=875:d=25', fs_in, x)

>>> # Apply mirror effect to an image
>>> I_out = ffmpegio.image.filter('crop=iw/2:ih:0:0,split[left][tmp];[tmp]hflip[right];[left][right] hstack', I_in)

>>> # Add text at the center of the video frame
>>> filter = "drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h)/2"
>>> fs_out, F_out = ffmpegio.video.filter(filter, fs_in, F_in)

Stream I/O

>>> # process video 100 frames at a time and save output as a new video
>>> # with the same frame rate
>>> with ffmpegio.open('myvideo.mp4', 'rv', blocksize=100) as fin,
>>>      ffmpegio.open('myoutput.mp4', 'wv', rate=fin.rate) as fout:
>>>     for frames in fin:
>>>         fout.write(myprocess(frames))

Video from Matplotlib Figure

To enable this feature, you must also install matplotlib:

pip install matplotlib
>>> # process video 100 frames at a time and save output as a new video
>>> # with the same frame rate
>>> import ffmpegio
>>> from matplotlib import pyplot as plt
>>> import numpy as np
>>>
>>> fig, ax = plt.subplots()
>>>
>>> x = np.arange(0, 2*np.pi, 0.01)
>>> line, = ax.plot(x, np.sin(x))
>>>
>>> interval=20 # delay in milliseconds
>>> save_count=50 # number of frames
>>>
>>> def animate(i):
>>>     line.set_ydata(np.sin(x + i / 50))  # update the data.
>>>     return line
>>>
>>> with ffmpegio.open(
>>>   "output.mp4", # output file name
>>>   "wv", # open file in write-video mode
>>>   1e3/interval, # framerate in frames/second
>>>   pix_fmt="yuv420p", # specify the pixel format (default is yuv444p)
>>> ) as f:
>>>     for n in range(save_count):
>>>         animate(n) # update figure
>>>         f.write(fig) # write new frame

Filtergraph Builder

>>> # build complex filtergraph
>>> from ffmpegio import filtergraph as fgb
>>>
>>> v0 = "[0]" >> fgb.trim(start_frame=10, end_frame=20)
>>> v1 = "[0]" >> fgb.trim(start_frame=30, end_frame=40)
>>> v3 = "[1]" >> fgb.hflip()
>>> v2 = (v0 | v1) + fgb.concat(2)
>>> v5 = (v2|v3) + fgb.overlay(eof_action='repeat') + fgb.drawbox(50, 50, 120, 120, 'red', t=5)
>>> v5
<ffmpegio.filtergraph.Graph.Graph object at 0x2a4ef084bd0>
    FFmpeg expression: "[0]trim=start_frame=10:end_frame=20[L0];[0]trim=start_frame=30:end_frame=40[L1];[L0][L1]concat=2[L2];[1]hflip[L3];[L2][L3]overlay=eof_action=repeat,drawbox=50:50:120:120:red:t=5"
    Number of chains: 5
      chain[0]: [0]trim=start_frame=10:end_frame=20[L0];
      chain[1]: [0]trim=start_frame=30:end_frame=40[L1];
      chain[2]: [L0][L1]concat=2[L2];
      chain[3]: [1]hflip[L3];
      chain[4]: [L2][L3]overlay=eof_action=repeat,drawbox=50:50:120:120:red:t=5[UNC0]
    Available input pads (0):
    Available output pads: (1): (4, 1, 0)

Device I/O Enumeration

>>> # record 5 minutes of audio from Windows microphone
>>> fs, x = ffmpegio.audio.read('a:0', f_in='dshow', sample_fmt='dbl', t=300)

>>> # capture Windows' webcam frame
>>> with ffmpegio.open('v:0', 'rv', f_in='dshow') as webcam,
>>>     for frame in webcam:
>>>         process_frame(frame)

Progress Callback

>>> import pprint

>>> # progress callback
>>> def progress(info, done):
>>>     pprint(info) # bunch of stats
>>>     if done:
>>>        print('video decoding completed')
>>>     else:
>>>        return check_cancel_command(): # return True to kill immediately

>>> # can be used in any butch processing
>>> rate, F = ffmpegio.video.read('myvideo.mp4', progress=progress)

>>> # as well as for stream processing
>>> with ffmpegio.open('myvideo.mp4', 'rv', blocksize=100, progress=progress) as fin:
>>>     for frames in fin:
>>>         myprocess(frames)

Run FFmpeg and FFprobe Directly

>>> from ffmpegio import ffmpeg, FFprobe, ffmpegprocess
>>> from subprocess import PIPE

>>> # call with options as a long string
>>> ffmpeg('-i input.avi -b:v 64k -bufsize 64k output.avi')

>>> # or call with list of options
>>> ffmpeg(['-i', 'input.avi' ,'-r', '24', 'output.avi'])

>>> # the same for ffprobe
>>> ffprobe('ffprobe -show_streams -select_streams a INPUT')

>>> # specify subprocess arguments to capture stdout
>>> out = ffprobe('ffprobe -of json -show_frames INPUT',
                  stdout=PIPE, universal_newlines=True).stdout

>>> # use ffmpegprocess to take advantage of ffmpegio's default behaviors
>>> out = ffmpegprocess.run({"inputs": [("input.avi", None)],
                             "outputs": [("out1.mp4", None),
                                         ("-", {"f": "rawvideo", "vframes": 1, "pix_fmt": "gray", "an": None})
                            }, capture_log=True)
>>> print(out.stderr) # print the captured FFmpeg logs (banner text omitted)
>>> b = out.stdout # width*height bytes of the first frame