Skip to content

Commit

Permalink
WIP GraphSpace integration.
Browse files Browse the repository at this point in the history
  • Loading branch information
astamm committed Sep 21, 2021
1 parent 3e783a9 commit 8be6b1a
Showing 1 changed file with 274 additions and 0 deletions.
274 changes: 274 additions & 0 deletions data-raw/wip-graphspace.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
---
title: "Untitled"
output: html_document
---

```{r setup, include=FALSE}
library(reticulate)
virtualenv_create("graph-space")
py_install("~/Softs/GraphSpace/", envname = "graph-space")
use_virtualenv("graph-space")
```

```{python}
import os
import sys
#sys.path.append("C:\\Users\\Anna\\OneDrive - Politecnico di Milano\\Windows\\Polimi\\Ricerca\\Regression\\GraphSpace\\")
from core import Graph, GraphSet, Mean, MeanIterative
from distance import euclidean
from matcher import GA, ID
from AlignCompute import mean_aac, gpc_aac, mean_aac_pred, ggr_aac
from core import Graph
from core import GraphSet
from core import Mean
from core import MeanIterative
from matcher import Matcher, alignment, GA, ID, GAS, GAS1
from distance import euclidean, hamming, sqeuclidean
import math
import numpy as np
import pandas as pd
from scipy.sparse import lil_matrix, vstack
```

## 1) Binary graphs

Define the graphs:

```{python}
x1 = {}
x1[0, 0] = [1]
x1[1, 1] = [1]
x1[2, 2] = [1]
x1[3, 3] = [1]
x1[4, 4] = [1]
x1[5, 5] = [1]
x1[0, 1] = [1]
x1[1, 0] = [1]
x1[1, 2] = [1]
x1[2, 1] = [1]
x1[2, 5] = [1]
x1[3, 4] = [1]
x1[4, 3] = [1]
x1[5, 2] = [1]
x2 = {}
x2[0, 0] = [1]
x2[1, 1] = [1]
x2[2, 2] = [1]
x2[3, 3] = [1]
x2[4, 4] = [1]
x2[5, 5] = [1]
x2[0, 1] = [1]
x2[1, 0] = [1]
x2[1, 2] = [1]
x2[2, 1] = [1]
x2[3, 4] = [1]
x2[4, 3] = [1]
```

Create Graph set:

```{python}
G = GraphSet(graph_type='directed')
G.add(Graph(x=x1, s=[1,2], adj=None))
G.add(Graph(x=x2, s=[2,3], adj=None))
```

Compute a distance with euclidean distance without matching the graphs

```{python}
match=ID(hamming())
match.dis(G.X[0],G.X[1])
```

## 2) GRAPHS with Euclidean scalar and vector attributes on both nodes and edges

Define the graphs:

```{python}
x1 = {}
x1[0, 0] = [0.813, 0.630]
x1[1, 1] = [1.606, 2.488]
x1[2, 2] = [2.300, 0.710]
x1[3, 3] = [0.950, 1.616]
x1[4, 4] = [2.046, 1.560]
x1[5, 5] = [2.959, 2.387]
x1[0, 1] = [1]
x1[1, 0] = [1]
x1[1, 2] = [1]
x1[2, 1] = [1]
x1[2, 5] = [1]
x1[3, 4] = [1]
x1[4, 3] = [1]
x1[5, 2] = [1]
x2 = {}
x2[0, 0] = [0.810, 0.701]
x2[1, 1] = [1.440, 2.437]
x2[2, 2] = [2.358, 0.645]
x2[3, 3] = [0.786, 1.535]
x2[4, 4] = [2.093, 1.591]
x2[5, 5] = [3.3, 2.2]
x2[0, 1] = [1]
x2[1, 0] = [1]
x2[1, 2] = [1]
x2[2, 1] = [1]
x2[3, 4] = [1]
x2[4, 3] = [1]
x3 = {}
x3[0, 0] = [0.71, 0.72]
x3[1, 1] = [1.45532, 2.45648]
x3[2, 2] = [2.21121, 0.757368]
x3[3, 3] = [0.796224, 1.53137]
x3[4, 4] = [2.06496, 1.5699]
x3[5, 5] = [2.75535, 0.194153]
x3[0, 1] = [1]
x3[1, 0] = [1]
x3[0, 5] = [1]
x3[5, 0] = [1]
x3[1, 2] = [1]
x3[2, 1] = [1]
x3[3, 4] = [1]
x3[4, 3] = [1]
```

Create Graph set:

```{python}
G = GraphSet(graph_type='directed')
G.add(Graph(x=x1, s=None, adj=None))
G.add(Graph(x=x2, s=None, adj=None))
G.add(Graph(x=x3, s=None, adj=None))
```

or import a GraphSet

```{python}
X = GraphSet()
X.read_from_text("Dataset.txt")
```

Compute the euclidean distance with or without matching between two graphs

- Identity matching
```{python}
match = ID(sqeuclidean())
match.dis(G.X[0], G.X[1])
print(match.f)
# the identity permutation as expected!
```
- Matching Function - GA or GAS:
```{python}
match = GAS(sqeuclidean())
match.dis(G.X[1], G.X[2])
# to see the matching transformation:
print(match.f)
del match
```

Compute the mean with the identity matcher
```{python}
match = ID(sqeuclidean())
mu = Mean(G, match)
MU = mu.mean()
# to see the result:
print(MU.x)
del match, mu, MU
```

Align All and Compute Mean with GA matcher
```{python}
match = GA(sqeuclidean())
mu = mean_aac(G, match)
mu.align_and_est()
MU = mu.mean
print(MU.x)
del match, mu, MU
```

Align All and Compute Mean with GAS matcher
```{python}
match = GAS(sqeuclidean())
# or equivalently:
# GAS(euclidean())
# GAS('euclidean')
# GAS('euclidean','euclidean')
mu = mean_aac(G, match)
mu.align_and_est()
MU = mu.mean
print(MU.x)
del match, mu, MU
```

Align All and Compute GPC
```{python}
n_comp=2
p=gpc_aac(G,GA(sqeuclidean()))
p.align_and_est(n_comp,scale=False,s=[0,10])
```

To project the data along the i-th GPC you need to:
- create the geodesic by interpolation the two points barycenter and p.e_vec.X[i]
- save the graphs along the geodesic that correspond to the scores (p.scores[:,i])
For example the first GPC:
```{python}
n_gpc=0
Vector=p.e_vec.X[n_gpc]
Bar=p.barycenter_net
l=list(np.sort(p.scores[:,n_gpc]))
G_along_GPC=GraphSet()
for i in range(len(l)):
G_along_GPC.add(p.add(1,Bar,l[i],Vector,range(Vector.n_nodes)))
print(G_along_GPC.X[i].x)
```

Align All and Compute GGR regression scalar on graph
```{python}
G=GraphSet()
G.read_from_text("ErdosReny_100.txt")
# Training and Test set
n_train=10
X_train=G.sublist(list(range(0,n_train)))
# Run GGR:
r=ggr_aac(X_train,GAS(sqeuclidean()),distance=sqeuclidean())
r.align_and_est()
# Proportion of variance explained
r.R2
# Network Coefficient
print(r.network_coef.x)
# Prediction:
Y_test=G.X[1]
x_new=pd.DataFrame(data=[float(Y_test.s)])
r.predict(x_new)
# Conformal Prediction Bands:
Y = GraphSet(graph_type='directed')
for j in range(190):
x0 = {}
i0 = np.random.binomial(n=1,p=0.4)
x0[0,0] = [1]
x0[1,1] = [1]
x0[i0,(1-i0)] = [np.random.normal(loc=20, scale=3)]
Y.add(Graph(x=x0, y=None, adj=None))
for j in range(10):
x0 = {}
x0[0,0] = [1]
x0[1,1] = [1]
x0[0,1] = [np.random.normal(loc=20, scale=3)]
x0[1,0] = [np.random.normal(loc=2, scale=0.1)]
Y.add(Graph(x=x0, y=None, adj=None))
match = GAS()
mu_pred = mean_aac_pred(Y, match)
mu_pred.align_est_and_predRegions()
mu_pred.conformal_matrix
```

0 comments on commit 8be6b1a

Please sign in to comment.