Skip to content

A guide for extracting public data from Redfin using Python and Oxylabs Web Scraper API. From using the API to processing data and saving the result.

Notifications You must be signed in to change notification settings

oxylabs/scraping-real-estate-data-with-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 

Repository files navigation

Scraping Real Estate Data With Python

Oxylabs promo code

Here's the process of collecting public property data from Redfin with the help of Oxylabs Web Scraper API (1-week free trial) and Python. You can scrape real estate data like prices, sizes, number of beds and baths available, and addresses, increasing the likelihood of finding a good deal or understanding the market better.

For the full guide, check our blog post.

1. Prepare environment

touch main.py

Install dependencies

pip install bs4 requests pandas

Import libraries

import requests
import pandas as pd
from bs4 import BeautifulSoup

2. Prepare the API request

USERNAME = "USERNAME"
PASSWORD = "PASSWORD"

payload = {
    "source": "universal",
    "url": "https://www.redfin.com/city/29470/IL/Chicago",
}

3. Send request

response = requests.post(
    url="https://realtime.oxylabs.io/v1/queries",
    auth=(USERNAME, PASSWORD),
    json=payload,
)
response.raise_for_status()
print(response.status_code)

4. Extract HTML

html = response.json()["results"][0]["content"]
soup = BeautifulSoup(html, "html.parser")

5. Parse data from HTML

Locating elements

Locating elements

def extract_data_from_listing(listing):
    price = listing.find("span", {"class": "homecardV2Price"}).get_text(strip=True)
    address = listing.find("span", {"class": "collapsedAddress"}).get_text(strip=True)
    stats = listing.find_all("div", {"class":"stats"})
    try:
        bed_count_elem, bath_count_elem, size_elem = stats[0], stats[1], stats[2]
    except IndexError:
        raise Exception("Got less stats than expected")

    bed_count = bed_count_elem.get_text(strip=True)
    bath_count = bath_count_elem.get_text(strip=True)
    size = size_elem.get_text(strip=True)

    return {
        "price": price,
        "address": address,
        "bed_count": bed_count,
        "bath_count": bath_count,
        "size": size,
    }


data = []

for listing in soup.find_all("div", {"class": "bottomV2"}):
    entry = extract_data_from_listing(listing)
    data.append(entry)

6. Save to CSV

df = pd.DataFrame(data)
df.to_csv("real_estate_data.csv")

The complete code

import requests
import pandas as pd
from bs4 import BeautifulSoup


def extract_data_from_listing(listing):
    price = listing.find("span", {"class": "homecardV2Price"}).get_text(strip=True)
    address = listing.find("span", {"class": "collapsedAddress"}).get_text(strip=True)
    stats = listing.find_all("div", {"class":"stats"})
    try:
        bed_count_elem, bath_count_elem, size_elem = stats[0], stats[1], stats[2]
    except IndexError:
        raise Exception("Got less stats than expected")

    bed_count = bed_count_elem.get_text(strip=True)
    bath_count = bath_count_elem.get_text(strip=True)
    size = size_elem.get_text(strip=True)

    return {
        "price": price,
        "address": address,
        "bed_count": bed_count,
        "bath_count": bath_count,
        "size": size,
    }


USERNAME = "USERNAME"
PASSWORD = "PASSWORD"

payload = {
    "source": "universal",
    "url": "https://www.redfin.com/city/29470/IL/Chicago",
}

response = requests.post(
    url="https://realtime.oxylabs.io/v1/queries",
    auth=(USERNAME, PASSWORD),
    json=payload,
)
response.raise_for_status()

html = response.json()["results"][0]["content"]
soup = BeautifulSoup(html, "html.parser")

data = []

for listing in soup.find_all("div", {"class": "bottomV2"}):
    entry = extract_data_from_listing(listing)
    data.append(entry)


df = pd.DataFrame(data)
df.to_csv("real_estate_data.csv")

Wrapping up

Using Python and Web Scraper API is a seamless way to automate real estate data collection processes required for insights into the real estate market.

Please refer to our technical documentation for more on the API parameters and variables found in this tutorial.

If you have any questions, feel free to reach out by sending a message to [email protected].

About

A guide for extracting public data from Redfin using Python and Oxylabs Web Scraper API. From using the API to processing data and saving the result.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages