Skip to content

Commit

Permalink
Merge pull request #16 from MichaelClifford/gpu-test
Browse files Browse the repository at this point in the history
add gpu test notebook
  • Loading branch information
Karanraj Chauhan authored Sep 22, 2021
2 parents 8b1305e + a50a836 commit d70fd84
Showing 1 changed file with 218 additions and 0 deletions.
218 changes: 218 additions & 0 deletions notebooks/confirm_gpu_available.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "16e3552b-6245-4e8a-ab1c-2e17729901d4",
"metadata": {},
"source": [
"# Confirm Notebook Can Access GPU \n",
"\n",
"This notebook provides a couple of small examples that confirm your notebook environment is able to connect to a GPU, either locally or on a cluster. The bottom section also provides a short example showcasing the increased performance of using the GPU over a CPU for a matrix multiplication task. \n",
"\n",
"\n",
"The one caveat to ensuring this notebook works correctly and you can communicate with the gpu, is that you must install pytorch.\n",
"\n",
"```\n",
"pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html\n",
"```\n",
"\n",
"In the near future this requirement will be handled automatically. "
]
},
{
"cell_type": "markdown",
"id": "8578d326-157b-4512-9379-367cf4629d93",
"metadata": {},
"source": [
"## Am I connected to a GPU?"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a66360fb-ff15-477b-a815-62c229bb39b3",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import timeit"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ef63602d-c4e0-4056-898f-f43fba8eba35",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[0.3546, 0.9113, 0.7730],\n",
" [0.1329, 0.8297, 0.8176],\n",
" [0.4446, 0.3666, 0.1261],\n",
" [0.4993, 0.8514, 0.9197],\n",
" [0.7537, 0.0293, 0.4049]])\n"
]
}
],
"source": [
"x = torch.rand(5, 3)\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e22ed182-b282-4ebd-aba2-91cce53c321d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"use_cuda = torch.cuda.is_available()\n",
"use_cuda"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "840b1c7e-8832-4538-9173-90f07bab5be7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"__CUDNN VERSION: 8005\n",
"__Number CUDA Devices: 1\n",
"__CUDA Device Name: Tesla K80\n",
"__CUDA Device Total Memory [GB]: 11.99702016\n"
]
}
],
"source": [
"if use_cuda:\n",
" print('__CUDNN VERSION:', torch.backends.cudnn.version())\n",
" print('__Number CUDA Devices:', torch.cuda.device_count())\n",
" print('__CUDA Device Name:',torch.cuda.get_device_name(0))\n",
" print('__CUDA Device Total Memory [GB]:',torch.cuda.get_device_properties(0).total_memory/1e9)"
]
},
{
"cell_type": "markdown",
"id": "18651412-75e9-4894-86a2-563fc89ed652",
"metadata": {},
"source": [
"The above outputs indicate that pytorch is installed, it can see the gpu, and it shows us some details about the device we are connected to. "
]
},
{
"cell_type": "markdown",
"id": "3dc87e6e-5c8a-4754-9d0b-76c44bb4cd04",
"metadata": {},
"source": [
"## Does the GPU speed things up?"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5364fc66-f118-439e-891b-64c0e50cca01",
"metadata": {},
"outputs": [],
"source": [
"def batched_dot_mul_sum(a,b):\n",
" return a.mul(b).sum(-1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d2be1632-0854-4feb-8d51-c6ffeaa18797",
"metadata": {},
"outputs": [],
"source": [
"cpu = torch.device(\"cpu\")\n",
"gpu = torch.device(\"cuda\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e58e65b6-4e04-44e5-a3a5-dd45d1af0dab",
"metadata": {},
"outputs": [],
"source": [
"x_cpu = torch.randn(4000,4000,device=cpu)\n",
"x_gpu = torch.randn(4000,4000, device=gpu)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4a2cfde3-b101-46db-b9e4-0b5d72a10ca2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mul_sum(x, x) cpu: 2.2202524829190224 seconds\n",
"mul_sum(x, x) gpu: 0.003196620149537921 seconds\n"
]
}
],
"source": [
"t0 = timeit.Timer(stmt='batched_dot_mul_sum(x,x)', setup='from __main__ import batched_dot_mul_sum',\n",
" globals={'x': x_cpu})\n",
"\n",
"t1 = timeit.Timer(stmt='batched_dot_mul_sum(x,x)', setup='from __main__ import batched_dot_mul_sum',\n",
" globals={'x': x_gpu})\n",
"\n",
"print(f'mul_sum(x, x) cpu: {t0.timeit(100)} seconds')\n",
"print(f'mul_sum(x, x) gpu: {t1.timeit(100)} seconds')"
]
},
{
"cell_type": "markdown",
"id": "833d220d-bc5a-4698-9076-b7725ea6d257",
"metadata": {},
"source": [
"We can see from the output above that the speed up on this particular node is orders of magnitude faster using the GPU over the CPU for a 4000,4000 matrix multiplication. Yeah!\n",
"\n",
"If this notebook does not run for you, that means you are not connected to a GPU. "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

0 comments on commit d70fd84

Please sign in to comment.