-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6382 from openjournals/joss.07561
Merging automatically
- Loading branch information
Showing
4 changed files
with
905 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20250128152255-5087210e66a5a1684348d021f6dcd1223bdf021b</doi_batch_id> | ||
<timestamp>20250128152255</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>01</month> | ||
<year>2025</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>10</volume> | ||
</journal_volume> | ||
<issue>105</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>scene_synthesizer: A Python Library for Procedural Scene Generation in Robot Manipulation</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Clemens</given_name> | ||
<surname>Eppner</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-5398-4037</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Adithyavairavan</given_name> | ||
<surname>Murali</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Caelan</given_name> | ||
<surname>Garrett</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0002-6474-1276</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Rowland</given_name> | ||
<surname>O’Flaherty</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Tucker</given_name> | ||
<surname>Hermans</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0003-2496-2768</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Wei</given_name> | ||
<surname>Yang</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0000-0003-3975-2472</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Dieter</given_name> | ||
<surname>Fox</surname> | ||
<affiliations> | ||
<institution><institution_name>NVIDIA Research</institution_name></institution> | ||
</affiliations> | ||
<ORCID>https://orcid.org/0009-0009-4694-9127</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>01</month> | ||
<day>28</day> | ||
<year>2025</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>7561</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.07561</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14736778</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7561</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.07561</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.07561</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07561.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="hess2021procedural"> | ||
<article_title>A procedural world generation framework for systematic evaluation of continual learning</article_title> | ||
<author>Hess</author> | ||
<journal_title>arXiv preprint arXiv:2106.02585</journal_title> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Hess, T., Mundt, M., Pliushch, I., & Ramesh, V. (2021). A procedural world generation framework for systematic evaluation of continual learning. arXiv Preprint arXiv:2106.02585.</unstructured_citation> | ||
</citation> | ||
<citation key="Denninger2023"> | ||
<article_title>BlenderProc2: A procedural pipeline for photorealistic rendering</article_title> | ||
<author>Denninger</author> | ||
<journal_title>Journal of Open Source Software</journal_title> | ||
<issue>82</issue> | ||
<volume>8</volume> | ||
<doi>10.21105/joss.04901</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Denninger, M., Winkelbauer, D., Sundermeyer, M., Boerdijk, W., Knauer, M., Strobl, K. H., Humt, M., & Triebel, R. (2023). BlenderProc2: A procedural pipeline for photorealistic rendering. Journal of Open Source Software, 8(82), 4901. https://doi.org/10.21105/joss.04901</unstructured_citation> | ||
</citation> | ||
<citation key="Mo_2019_CVPR"> | ||
<article_title>PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding</article_title> | ||
<author>Mo</author> | ||
<journal_title>Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)</journal_title> | ||
<doi>10.1109/cvpr.2019.00100</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., & Su, H. (2019). PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2019.00100</unstructured_citation> | ||
</citation> | ||
<citation key="ehsani2021manipulathor"> | ||
<article_title>ManipulaTHOR: A framework for visual object manipulation</article_title> | ||
<author>Ehsani</author> | ||
<journal_title>Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)</journal_title> | ||
<doi>10.1109/cvpr46437.2021.00447</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Ehsani, K., Han, W., Herrasti, A., VanderBilt, E., Weihs, L., Kolve, E., Kembhavi, A., & Mottaghi, R. (2021). ManipulaTHOR: A framework for visual object manipulation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr46437.2021.00447</unstructured_citation> | ||
</citation> | ||
<citation key="procthor"> | ||
<article_title>ProcTHOR: Large-Scale Embodied AI Using Procedural Generation</article_title> | ||
<author>Deitke</author> | ||
<journal_title>Advances in neural information processing systems (NeurIPS)</journal_title> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Deitke, M., VanderBilt, E., Herrasti, A., Weihs, L., Salvador, J., Ehsani, K., Han, W., Kolve, E., Farhadi, A., Kembhavi, A., & Mottaghi, R. (2022). ProcTHOR: Large-Scale Embodied AI Using Procedural Generation. Advances in Neural Information Processing Systems (NeurIPS).</unstructured_citation> | ||
</citation> | ||
<citation key="greff2021kubric"> | ||
<article_title>Kubric: A scalable dataset generator</article_title> | ||
<author>Greff</author> | ||
<journal_title>Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)</journal_title> | ||
<doi>10.1109/cvpr52688.2022.00373</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., Fleet, D. J., Gnanapragasam, D., Golemo, F., Herrmann, C., Kipf, T., Kundu, A., Lagun, D., Laradji, I., Liu, H.-T. (Derek), Meyer, H., Miao, Y., Nowrouzezahrai, D., Oztireli, C., … Tagliasacchi, A. (2022). Kubric: A scalable dataset generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52688.2022.00373</unstructured_citation> | ||
</citation> | ||
<citation key="infinigen2023infinite"> | ||
<article_title>Infinite photorealistic worlds using procedural generation</article_title> | ||
<author>Raistrick</author> | ||
<journal_title>Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)</journal_title> | ||
<doi>10.1109/cvpr52729.2023.01215</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Raistrick, A., Lipson, L., Ma, Z., Mei, L., Wang, M., Zuo, Y., Kayan, K., Wen, H., Han, B., Wang, Y., Newell, A., Law, H., Goyal, A., Yang, K., & Deng, J. (2023). Infinite photorealistic worlds using procedural generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 12630–12641. https://doi.org/10.1109/cvpr52729.2023.01215</unstructured_citation> | ||
</citation> | ||
<citation key="robocasa2024"> | ||
<article_title>RoboCasa: Large-scale simulation of everyday tasks for generalist robots</article_title> | ||
<author>Nasiriany</author> | ||
<journal_title>Robotics: Science and systems</journal_title> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Nasiriany, S., Maddukuri, A., Zhang, L., Parikh, A., Lo, A., Joshi, A., Mandlekar, A., & Zhu, Y. (2024). RoboCasa: Large-scale simulation of everyday tasks for generalist robots. Robotics: Science and Systems.</unstructured_citation> | ||
</citation> | ||
<citation key="schult24controlroom3d"> | ||
<article_title>ControlRoom3D: Room generation using semantic proxy rooms</article_title> | ||
<author>Schult</author> | ||
<journal_title>Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)</journal_title> | ||
<doi>10.1109/cvpr52733.2024.00593</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Schult, J., Tsai, S., Höllein, L., Wu, B., Wang, J., Ma, C.-Y., Li, K., Wang, X., Wimbauer, F., He, Z., Zhang, P., Leibe, B., Vajda, P., & Hou, J. (2024). ControlRoom3D: Room generation using semantic proxy rooms. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52733.2024.00593</unstructured_citation> | ||
</citation> | ||
<citation key="hoellein2023text2room"> | ||
<article_title>Text2Room: Extracting textured 3D meshes from 2D text-to-image models</article_title> | ||
<author>Höllein</author> | ||
<journal_title>Proceedings of the IEEE/CVF international conference on computer vision (ICCV)</journal_title> | ||
<doi>10.1109/iccv51070.2023.00727</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Höllein, L., Cao, A., Owens, A., Johnson, J., & Nießner, M. (2023). Text2Room: Extracting textured 3D meshes from 2D text-to-image models. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 7909–7920. https://doi.org/10.1109/iccv51070.2023.00727</unstructured_citation> | ||
</citation> | ||
<citation key="yuan2024robopointvisionlanguagemodelspatial"> | ||
<article_title>RoboPoint: A vision-language model for spatial affordance prediction for robotics</article_title> | ||
<author>Yuan</author> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Yuan, W., Duan, J., Blukis, V., Pumacay, W., Krishna, R., Murali, A., Mousavian, A., & Fox, D. (2024). RoboPoint: A vision-language model for spatial affordance prediction for robotics. https://arxiv.org/abs/2406.10721</unstructured_citation> | ||
</citation> | ||
<citation key="fishman2022motionpolicynetworks"> | ||
<article_title>Motion policy networks</article_title> | ||
<author>Fishman</author> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Fishman, A., Murali, A., Eppner, C., Peele, B., Boots, B., & Fox, D. (2022). Motion policy networks. https://arxiv.org/abs/2210.12209</unstructured_citation> | ||
</citation> | ||
<citation key="murali2023cabinet"> | ||
<article_title>CabiNet: Scaling neural collision detection for object rearrangement with procedural scene generation</article_title> | ||
<author>Murali</author> | ||
<journal_title>Proceedings of the IEEE international conference on robotics and automation (ICRA)</journal_title> | ||
<doi>10.1109/icra48891.2023.10161528</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Murali, A., Mousavian, A., Eppner, C., Fishman, A., & Fox, D. (2023, May). CabiNet: Scaling neural collision detection for object rearrangement with procedural scene generation. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/icra48891.2023.10161528</unstructured_citation> | ||
</citation> | ||
<citation key="dalal2023optimus"> | ||
<article_title>Imitating task and motion planning with visuomotor transformers</article_title> | ||
<author>Dalal</author> | ||
<journal_title>Conference on Robot Learning</journal_title> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Dalal, M., Mandlekar, A., Garrett, C., Handa, A., Salakhutdinov, R., & Fox, D. (2023). Imitating task and motion planning with visuomotor transformers. Conference on Robot Learning.</unstructured_citation> | ||
</citation> | ||
<citation key="scenic2020"> | ||
<article_title>Scenic: A language for scenario specification and data generation</article_title> | ||
<author>Fremont</author> | ||
<journal_title>CoRR</journal_title> | ||
<volume>abs/2010.06580</volume> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Fremont, D. J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A. L., & Seshia, S. A. (2020). Scenic: A language for scenario specification and data generation. CoRR, abs/2010.06580. https://arxiv.org/abs/2010.06580</unstructured_citation> | ||
</citation> | ||
<citation key="yuan2023m2t2multitaskmaskedtransformer"> | ||
<article_title>M2T2: Multi-task masked transformer for object-centric pick and place</article_title> | ||
<author>Yuan</author> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Yuan, W., Murali, A., Mousavian, A., & Fox, D. (2023). M2T2: Multi-task masked transformer for object-centric pick and place. https://arxiv.org/abs/2311.00926</unstructured_citation> | ||
</citation> | ||
<citation key="robotix2019"> | ||
<article_title>The RobotriX: An eXtremely photorealistic and very-large-scale indoor dataset of sequences with robot trajectories and interactions</article_title> | ||
<author>Garcia-Garcia</author> | ||
<doi>10.1109/iros.2018.8594495</doi> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Garcia-Garcia, A., Martinez-Gonzalez, P., Oprea, S., Castro-Vargas, J. A., Orts-Escolano, S., Garcia-Rodriguez, J., & Jover-Alvarez, A. (2019). The RobotriX: An eXtremely photorealistic and very-large-scale indoor dataset of sequences with robot trajectories and interactions. https://doi.org/10.1109/iros.2018.8594495</unstructured_citation> | ||
</citation> | ||
<citation key="trimesh"> | ||
<article_title>Trimesh</article_title> | ||
<author>Dawson-Haggerty et al.</author> | ||
<unstructured_citation>Dawson-Haggerty et al. (n.d.). Trimesh (Version 3.2.0). https://trimesh.org/</unstructured_citation> | ||
</citation> | ||
<citation key="garrett2024simpler"> | ||
<article_title>Techniques for training machine learning models using robot simulation data</article_title> | ||
<author>Garrett</author> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Garrett, C. R., Ramos, F. T., Akinola, I., Degirmenci, A., Eppner, C., Fox, D., Hermans, T. R., Mandlekar, A. U., Mousavian, A., Narang, Y. S., O’Flaherty, R. W., Sundaralingam, B., & Yang, W. (2024). Techniques for training machine learning models using robot simulation data (Patent No. US20240338598A1). https://patentimages.storage.googleapis.com/98/5d/bb/6ac5fcbb5c0745/US20240338598A1.pdf</unstructured_citation> | ||
</citation> | ||
<citation key="yang2024physcenephysicallyinteractable3d"> | ||
<article_title>PhyScene: Physically interactable 3D scene synthesis for embodied AI</article_title> | ||
<author>Yang</author> | ||
<doi>10.1109/cvpr52733.2024.01539</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Yang, Y., Jia, B., Zhi, P., & Huang, S. (2024). PhyScene: Physically interactable 3D scene synthesis for embodied AI. https://doi.org/10.1109/cvpr52733.2024.01539</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Binary file not shown.
Oops, something went wrong.