-
Notifications
You must be signed in to change notification settings - Fork 648
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MMSIG] Support mmdeploy Docker for Jetson #2587
base: main
Are you sure you want to change the base?
Changes from all commits
df5c9b4
02e9770
3908c0d
59198d1
6a6a09c
2221b58
4ba4e09
130a337
1dd3ed8
c5f943b
e3d15d3
f6aa719
904bee1
7ab4bed
00161a6
1e61f31
1f79ff0
f382574
3264283
3577922
4021170
d1a2fda
3b25e3f
aa08272
80bf688
8bef364
1d3403c
4e47dfc
4873416
ab78255
26f427e
40ca356
e222c3c
14f4f3a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
FROM nvcr.io/nvidia/l4t-pytorch:r32.7.1-pth1.10-py3 | ||
|
||
ARG MMDEPLOY_VERSION=main | ||
ENV NVIDIA_VISIBLE_DEVICE all | ||
ENV NVIDIA_DRIVER_CAPABILITIES all | ||
ENV CUDA_HOME="/usr/local/cuda" | ||
ENV PATH="/usr/local/cuda/bin:${PATH}" | ||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/lib/python3.8/dist-packages/opencv-python.libs/${LD_LIBRARY_PATH}" | ||
ENV TENSORRT_DIR="/usr/include/aarch64-linux-gnu" | ||
|
||
ENV DEBIAN_FRONTEND=nointeractive | ||
ENV FORCE_CUDA="1" | ||
|
||
USER root | ||
WORKDIR /root/workspace | ||
|
||
# install dependencies && reinstall python3.8 | ||
RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 42D5A192B819C5DA &&\ | ||
apt-get remove python3 &&\ | ||
apt-get update &&\ | ||
apt-get install -y vim wget libspdlog-dev libssl-dev libpng-dev pkg-config libhdf5-100 libhdf5-dev patch --no-install-recommends\ | ||
python3.8 python3.8-dev python3.8-pip --no-install-recommends &&\ | ||
python3.8 -m pip install --upgrade --no-cache-dir setuptools packaging 'Cython<3' wheel &&\ | ||
python3.8 -m pip install --no-cache-dir --verbose wget psutil numpy &&\ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why need to install these packages? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
this package for build the pytorch, I referenc from l4t repo |
||
python3.8 -m pip install --upgrade --force-reinstall --no-cache-dir --verbose cmake protobuf | ||
python3.8 -m pip install onnx==1.10 versioned-hdf5 numpy | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why install There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. numpy here need to update, versioned-hdf5 here for pycuda |
||
|
||
# build pytorch 1.10.0 for python3.8 | ||
# Hope it can works lol | ||
# patch for https://github.com/pytorch/pytorch/issues/45323. Save here, maybe I will meet this issue. | ||
# RUN PYTHON_ROOT=`pip3 show torch | grep Location: | cut -d' ' -f2` && \ | ||
# TORCH_CMAKE_CONFIG=$PYTHON_ROOT/torch/share/cmake/Torch/TorchConfig.cmake && \ | ||
# echo "patching _GLIBCXX_USE_CXX11_ABI in ${TORCH_CMAKE_CONFIG}" && \ | ||
# sed -i 's/ set(TORCH_CXX_FLAGS "-D_GLIBCXX_USE_CXX11_ABI=")/ set(TORCH_CXX_FLAGS "-D_GLIBCXX_USE_CXX11_ABI=0")/g' ${TORCH_CMAKE_CONFIG} | ||
RUN apt-get update && \ | ||
apt-get install -y --no-install-recommends \ | ||
libopenblas-dev \ | ||
libopenmpi-dev \ | ||
openmpi-bin \ | ||
openmpi-common \ | ||
gfortran \ | ||
libomp-dev \ | ||
&& rm -rf /var/lib/apt/lists/* \ | ||
&& apt-get clean | ||
|
||
RUN git clone --branch v1.10.0 --depth=1 --recursive https://github.com/pytorch/pytorch /tmp/pytorch && \ | ||
cd /tmp/pytorch && \ | ||
wget https://gist.githubusercontent.com/dusty-nv/ce51796085178e1f38e3c6a1663a93a1/raw/4f1a0f948150c91f877aa38075835df748c81fe5/pytorch-1.10-jetpack-4.5.1.patch &&\ | ||
patch -p1 < pytorch-1.10-jetpack-4.5.1.patch &&\ | ||
export USE_NCCL=0 && \ | ||
export USE_QNNPACK=0 && \ | ||
export USE_PYTORCH_QNNPACK=0 && \ | ||
export USE_NATIVE_ARCH=1 && \ | ||
export USE_DISTRIBUTED=1 && \ | ||
export USE_TENSORRT=0 && \ | ||
python3.8 -m pip install -r requirements.txt && \ | ||
python3.8 -m pip install --no-cache-dir scikit-build ninja && \ | ||
python3.8 setup.py bdist_wheel && \ | ||
cp dist/*.whl /root/workspace && \ | ||
rm -rf /tmp/pytorch | ||
RUN python3 -m pip install --verbose /opt/torch*.whl | ||
|
||
# build torchvision for python3.8 | ||
RUN apt-get update && \ | ||
apt-get install -y --no-install-recommends \ | ||
libjpeg-dev \ | ||
zlib1g-dev \ | ||
&& rm -rf /var/lib/apt/lists/* \ | ||
&& apt-get clean | ||
RUN git clone --branch v0.11.1 --recursive --depth=1 https://github.com/pytorch/vision torchvision && \ | ||
cd torchvision && \ | ||
git checkout v0.11.1 && \ | ||
python3.8 setup.py bdist_wheel && \ | ||
cp dist/torchvision*.whl /opt && \ | ||
rm -rf ../torchvision | ||
RUN python3.8 -m pip install --no-cache-dir --verbose /opt/torchvision*.whl | ||
|
||
# build onnxruntime for python3.8 | ||
RUN wget https://nvidia.box.com/shared/static/m9bz827ljmn771kvkjksdchmkczt3xke.whl -O onnxruntime_gpu-1.10.0-cp38-cp38-linux_aarch64.whl &&\ | ||
python3.8 -m pip install --no-cache-dir onnxruntime_gpu-1.10.0-cp38-cp38-linux_aarch64.whl | ||
|
||
# install mmcv | ||
RUN git clone --branch 2.x https://github.com/open-mmlab/mmcv.git | ||
RUN cd mmcv &&\ | ||
python3.8 -m pip install --no-cache-dir opencv-python==4.5.4.60 &&\ | ||
MMCV_WITH_OPS=1 python3 -m pip install -e . | ||
|
||
# build ppl.cv | ||
RUN git clone https://github.com/openppl-public/ppl.cv.git &&\ | ||
echo "export PPLCV_DIR=/root/workspace/ppl.cv" >> ~/.bashrc &&\ | ||
cd ppl.cv &&\ | ||
./build.sh cuda | ||
|
||
# build mmdeploy | ||
RUN git clone --recursive -b $MMDEPLOY_VERSION --depth 1 https://github.com/open-mmlab/mmdeploy &&\ | ||
cd mmdeploy &&\ | ||
mkdir -p build && cd build &&\ | ||
cmake .. \ | ||
-DMMDEPLOY_TARGET_BACKENDS="trt" \ | ||
-DTENSORRT_DIR=TENSORRT_DIR &&\ | ||
make -j$(nproc) && make install && cd .. &&\ | ||
python3 -m pip install --upgrade setuptools &&\ | ||
python3 -m pip install -e . &&\ | ||
mkdir -p build && cd build &&\ | ||
cmake .. \ | ||
-DMMDEPLOY_BUILD_SDK=ON \ | ||
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \ | ||
-DMMDEPLOY_BUILD_EXAMPLES=ON \ | ||
-DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \ | ||
-DMMDEPLOY_TARGET_BACKENDS="trt" \ | ||
-DTENSORRT_DIR=TENSORRT_DIR \ | ||
-Dpplcv_DIR=/root/workspace/ppl.cv/cuda-build/install/lib/cmake/ppl \ | ||
-DMMDEPLOY_CODEBASES=all && \ | ||
make -j$(nproc) && make install | ||
|
||
ENV MMDeploy_DIR="/root/workspace/mmdeploy/build/install/lib/cmake/MMDeploy" | ||
ENV LD_LIBRARY_PATH="/root/workspace/mmdeploy/build/lib:${BACKUP_LD_LIBRARY_PATH}" | ||
ENV PATH="/root/workspace/mmdeploy/build/bin:${PATH}" | ||
ENV PYTHONPATH="/root/workspace/mmdeploy:${PYTHONPATH}" |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
FROM nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3 | ||
|
||
ARG MMDEPLOY_VERSION=main | ||
ENV NVIDIA_VISIBLE_DEVICE all | ||
ENV NVIDIA_DRIVER_CAPABILITIES all | ||
ENV CUDA_HOME="/usr/local/cuda" | ||
ENV PATH="/usr/local/cuda/bin:${PATH}" | ||
ENV LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/lib/python3.8/dist-packages/opencv-python.libs${LD_LIBRARY_PATH}" | ||
ENV TENSORRT_DIR="/usr/include/aarch64-linux-gnu" | ||
|
||
ENV DEBIAN_FRONTEND=nointeractive | ||
ENV FORCE_CUDA="1" | ||
|
||
USER root | ||
WORKDIR /root/workspace | ||
|
||
# install dependencies | ||
RUN apt-get update &&\ | ||
apt-get install -y vim wget libspdlog-dev libssl-dev libpng-dev pkg-config libhdf5-103 libhdf5-dev --no-install-recommends &&\ | ||
python3 -m pip install onnx versioned-hdf5 | ||
|
||
# install onnxruntime | ||
RUN wget https://nvidia.box.com/shared/static/mvdcltm9ewdy2d5nurkiqorofz1s53ww.whl -O onnxruntime_gpu-1.15.1.whl &&\ | ||
python3 -m pip install --no-cache-dir onnxruntime_gpu-1.15.1-cp38-cp38-linux_aarch64.whl | ||
|
||
# install mmcv | ||
RUN git clone --branch 2.x https://github.com/open-mmlab/mmcv.git &&\ | ||
python3 -m pip install --no-cache-dir opencv-python==4.5.4.60 opencv-contrib-python==4.5.4.60 opencv-python-headless==4.5.4.60 &&\ | ||
MMCV_WITH_OPS=1 python3 -m pip install -e . | ||
|
||
# build ppl.cv | ||
RUN git clone https://github.com/openppl-public/ppl.cv.git &&\ | ||
echo "export PPLCV_DIR=/root/workspace/ppl.cv" >> ~/.bashrc &&\ | ||
./build.sh cuda | ||
|
||
# build mmdeploy | ||
RUN git clone --recursive -b $MMDEPLOY_VERSION --depth 1 https://github.com/open-mmlab/mmdeploy &&\ | ||
cd mmdeploy &&\ | ||
mkdir -p build && cd build &&\ | ||
cmake .. \ | ||
-DMMDEPLOY_TARGET_BACKENDS="trt" \ | ||
-DTENSORRT_DIR=TENSORRT_DIR &&\ | ||
make -j$(nproc) && make install && cd .. &&\ | ||
cd mmdeploy &&\ | ||
python3 -m pip install --upgrade setuptools &&\ | ||
python3 -m pip install -e . &&\ | ||
mkdir -p build && cd build &&\ | ||
cmake .. \ | ||
-DMMDEPLOY_BUILD_SDK=ON \ | ||
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \ | ||
-DMMDEPLOY_BUILD_EXAMPLES=ON \ | ||
-DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \ | ||
-DMMDEPLOY_TARGET_BACKENDS="trt" \ | ||
-DTENSORRT_DIR=TENSORRT_DIR \ | ||
-Dpplcv_DIR=/root/workspace/ppl.cv/cuda-build/install/lib/cmake/ppl \ | ||
-DMMDEPLOY_CODEBASES=all && \ | ||
make -j$(nproc) && make install | ||
|
||
# add patch to solve the build error | ||
RUN sed -i '/def _run_symbolic_method(g, op_name, symbolic_fn, args):/,/except TypeError as e:/\ | ||
{ | ||
s/\ | ||
return symbolic_fn(g, \*args)/\ | ||
graph_context = jit_utils.GraphContext(\ | ||
graph=g,\ | ||
block=g.block(),\ | ||
opset=GLOBALS.export_onnx_opset_version,\ | ||
original_node=None, # type: ignore[arg-type]\ | ||
params_dict=_params_dict,\ | ||
env={},\ | ||
)\ | ||
return symbolic_fn(graph_context, \*args)/\ | ||
}' /usr/local/lib/python3.8/dist-packages/torch/onnx/symbolic_helper.py | ||
|
||
ENV MMDeploy_DIR="/root/workspace/mmdeploy/build/install/lib/cmake/MMDeploy" | ||
ENV LD_LIBRARY_PATH="/root/workspace/mmdeploy/build/lib:${BACKUP_LD_LIBRARY_PATH}" | ||
ENV PATH="/root/workspace/mmdeploy/build/bin:${PATH}" | ||
ENV PYTHONPATH="/root/workspace/mmdeploy:${PYTHONPATH}" |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# Use Jetson Docker Image | ||
|
||
This document guides how to install mmdeploy with [Docker](https://docs.docker.com/get-docker/) on Jetson. | ||
|
||
## Get prebuilt docker images | ||
|
||
MMDeploy provides prebuilt docker images for the convenience of its users on [Docker Hub](https://hub.docker.com/r/openmmlab/mmdeploy). The docker images are built on | ||
the latest and released versions. We release two docker version, for Jetpack=5.1 and Jetpack=4.6.1 | ||
For instance, the image with tag `openmmlab/mmdeploy_jetpack5:v1` is built for Jetpack5.1 and the image with tag `openmmlab/mmdeploy_jetpack4.6.1:v1` is build for Jetpack 4.6.1. | ||
The specifications of the Docker Images are shown below. | ||
|
||
- jetpack5.1 | ||
|
||
| Item | Version | | ||
| :---------: | :---------: | | ||
| Jetpack | 5.1 | | ||
| Python | 3.8.10 | | ||
| Torch | 2.0.0 | | ||
| TorchVision | 0.15.0 | | ||
|
||
- jetpack4.6.1 | ||
|
||
| Item | Version | | ||
| :---------: | :---------: | | ||
| Jetpack | 4.6.1 | | ||
| Python | 3.8.10 | | ||
| Torch | 1.10.0 | | ||
| TorchVision | 0.11.0 | | ||
|
||
- jetpack 5.1 | ||
```shell | ||
export TAG=openmmlab/mmdeploy_jetpack5:v1 | ||
docker pull $TAG | ||
``` | ||
- jetpack 4.6.1 | ||
```shell | ||
export TAG=openmmlab/mmdeploy_jetpack4.6:v1 | ||
docker pull $TAG | ||
``` | ||
## Build docker images (optional) | ||
|
||
If the prebuilt docker images do not meet your requirements, | ||
then you can build your own image by running the following script. | ||
The docker file is `docker/jetson/jetpack5/Dockerfile` and `docker/jetson/jetpack4.6/Dockerfile`, | ||
|
||
```shell | ||
docker build docker/jetson/jetpack5 -t openmmlab/mmdeploy_jetpack5:v1 . | ||
// | ||
docker build docker/jetson/jetpack4.6 -t openmmlab/mmdeploy_jetpack4.6:v1 . | ||
``` | ||
|
||
## Run docker container | ||
|
||
After pulling or building the docker image, you can use `docker run` to launch the docker service: | ||
|
||
```shell | ||
docker run -it --rm --runtime nvidia --network host openmmlab/mmdeploy_jetpack5:v1 | ||
// | ||
docker run -it --rm --runtime nvidia --network host openmmlab/mmdeploy_jetpack4.6:v1 | ||
``` | ||
|
||
## TroubleShooting | ||
update: I solved the problem 3, 4 using sed in docker. | ||
If you using the jetpack5, it has some question need to solve. | ||
1. OpenCV problem | ||
if you find import cv2 wrong, can't find the libpng15.so | ||
```shell | ||
ln -s /usr/local/lib/python3.x/dist-packages/opencv-python.libs/* /usr/lib | ||
``` | ||
|
||
2. mmdetection problem | ||
if you find installed the mmdetection, but import the mmdet failed. you should use this to install | ||
```shell | ||
python3 -m pip install --user -e . | ||
``` | ||
|
||
3. Jetson No distributed problem(this is rewrited with the PR) | ||
if you convert the model like [Jetson.md](https://github.com/open-mmlab/mmdeploy/blob/main/docs/en/01-how-to-build/jetsons.md) | ||
you may find torch.distributed has no attribute ReduceOp. | ||
I just issue and make a simple patch, add file jetson_patch.py on ./mmdeploy/tools/ | ||
```python | ||
import torch.distributed | ||
if not torch.distributed.is_available(): | ||
torch.distributed.ReduceOp = lambda: None | ||
``` | ||
and import jetson_patch at the beginning which file you want. | ||
I know is not quietly ellegant, but it works well...(for Jetson AGX Orin) | ||
|
||
4. Jetpack with PyTorch 2.0 has some issue | ||
> If you use the docker, we help you change the PyTorch in dockerfile. | ||
|
||
we need to modify torch.onnx._run_symbolic_method | ||
**from** | ||
```python | ||
def _run_symbolic_method(g, op_name, symbolic_fn, args): | ||
r""" | ||
This trampoline function gets invoked for every symbolic method | ||
call from C++. | ||
""" | ||
try: | ||
return symbolic_fn(g, *args) | ||
except TypeError as e: | ||
# Handle the specific case where we didn't successfully dispatch | ||
# to symbolic_fn. Otherwise, the backtrace will have the clues | ||
# you need. | ||
e.args = ("{} (occurred when translating {})".format(e.args[0], op_name),) | ||
raise | ||
``` | ||
**to** | ||
```python | ||
@_beartype.beartype | ||
def _run_symbolic_method(g, op_name, symbolic_fn, args): | ||
r""" | ||
This trampoline function gets invoked for every symbolic method | ||
call from C++. | ||
""" | ||
try: | ||
graph_context = jit_utils.GraphContext( | ||
graph=g, | ||
block=g.block(), | ||
opset=GLOBALS.export_onnx_opset_version, | ||
original_node=None, # type: ignore[arg-type] | ||
params_dict=_params_dict, | ||
env={}, | ||
) | ||
return symbolic_fn(graph_context, *args) | ||
except TypeError as e: | ||
# Handle the specific case where we didn't successfully dispatch | ||
# to symbolic_fn. Otherwise, the backtrace will have the clues | ||
# you need. | ||
e.args = (f"{e.args[0]} (occurred when translating {op_name})",) | ||
raise | ||
``` | ||
Finally we can use Jetpack5.1 && MMDeploy happily:) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
why do we need
libhdf5-100 libhdf5-dev patch
?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
reference from install h5py and pycuda