Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add npu implementation of assign_score_withk_backward #3225

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 27 additions & 7 deletions mmcv/ops/csrc/pytorch/npu/assign_score_withk_npu.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,13 @@ using namespace std;

void assign_score_withk_forward_npu(int B, int N0, int N1, int M, int K, int O,
int aggregate, const Tensor& points,
const Tensor& centers, const Tensor& scores,
const Tensor& centers,
const Tensor& scores,
const Tensor& knn_idx, Tensor& output) {
at::Tensor points_trans = points.permute({0, 3, 1, 2});
at::Tensor centers_trans = centers.permute({0, 3, 1, 2});
EXEC_NPU_CMD(aclnnAssignScoreWithk, points_trans, centers_trans, scores,
knn_idx, B, N0, N1, M, K, O, aggregate, output);
at::Tensor points_trans = points.permute({0, 3, 1, 2});
at::Tensor centers_trans = centers.permute({0, 3, 1, 2});

EXEC_NPU_CMD(aclnnAssignScoreWithk, points_trans, centers_trans, scores, knn_idx, B, N0, N1, M, K, O, aggregate, output);
}

void assign_score_withk_forward_impl(int B, int N0, int N1, int M, int K, int O,
Expand All @@ -19,5 +20,24 @@ void assign_score_withk_forward_impl(int B, int N0, int N1, int M, int K, int O,
const Tensor& scores,
const Tensor& knn_idx, Tensor& output);

REGISTER_NPU_IMPL(assign_score_withk_forward_impl,
assign_score_withk_forward_npu);
REGISTER_NPU_IMPL(assign_score_withk_forward_impl, assign_score_withk_forward_npu);


void assign_score_withk_backward_npu(
int B, int N0, int N1, int M, int K, int O, int aggregate,
const Tensor& grad_out, const Tensor& points, const Tensor& centers,
const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
Tensor& grad_centers, Tensor& grad_scores) {

at::Tensor grad_out_trans = grad_out.permute({0, 2, 3, 1});

EXEC_NPU_CMD(aclnnAssignScoreWithkGrad, grad_out_trans, points, centers, scores, knn_idx, B, N0, N1, M, K, O, aggregate, grad_scores, grad_points, grad_centers);
}

void assign_score_withk_backward_impl(
int B, int N0, int N1, int M, int K, int O, int aggregate,
const Tensor& grad_out, const Tensor& points, const Tensor& centers,
const Tensor& scores, const Tensor& knn_idx, Tensor& grad_points,
Tensor& grad_centers, Tensor& grad_scores);

REGISTER_NPU_IMPL(assign_score_withk_backward_impl, assign_score_withk_backward_npu);
2 changes: 1 addition & 1 deletion mmcv/ops/csrc/pytorch/npu/pixel_group_npu.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -52,4 +52,4 @@ vector<vector<float>> pixel_group_impl(Tensor score, Tensor mask, Tensor embeddi
Tensor kernel_label, Tensor kernel_contour,
int kernel_region_num, float distance_threshold);

REGISTER_NPU_IMPL(pixel_group_impl, pixel_group_npu);
REGISTER_NPU_IMPL(pixel_group_impl, pixel_group_npu);
146 changes: 72 additions & 74 deletions tests/test_ops/test_assign_score_withk.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,77 +126,75 @@ def test_paconv_assign_scores(device):
assert torch.allclose(output.detach().cpu(), expected_output, atol=1e-6)

# test backward
if device == 'cuda':
loss = output.sum()
loss.backward()
expected_scores_grad = torch.tensor([[[[0.04288036, -0.18217683],
[-0.78873926, 0.7485497],
[-0.6866992, 0.05346543],
[0.04288036, -0.18217683]],
[[-1.1407862, 0.13533896],
[-0.06964391, -0.22948086],
[-1.1407862, 0.13533896],
[-0.06964391, -0.22948086]]],
[[[-0.3363995, -2.212181],
[-1.1589496, -2.7724311],
[-0.9387654, -1.3163853],
[-1.4385346, -1.0614843]],
[[-0.5048497, 1.4143617],
[-0.47332114, 0.6017133],
[-0.30974793, 1.1995442],
[-0.5048497,
1.4143617]]]]).float()
expected_points_grad = torch.tensor(
[[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0.15585709, 0.15585709, 0.15585709, 0.15585709],
[1.1893613, 1.1893613, 1.1893613, 1.1893613]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[1.6530733, 1.6530733, 1.6530733, 1.6530733],
[1.8130021, 1.8130021, 1.8130021, 1.8130021]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0.58863074, 0.58863074, 0.58863074, 0.58863074],
[1.3727596, 1.3727596, 1.3727596, 1.3727596]],
[[0.28462553, 0.28462553, 0.28462553, 0.28462553],
[0.8378516, 0.8378516, 0.8378516, 0.8378516]]],
[[[0.13817799, 0.13817799, 0.13817799, 0.13817799],
[0.34856772, 0.34856772, 0.34856772, 0.34856772]],
[[0.7405102, 0.7405102, 0.7405102, 0.7405102],
[0.06438422, 0.06438422, 0.06438422, 0.06438422]],
[[0.8491963, 0.8491963, 0.8491963, 0.8491963],
[1.1301711, 1.1301711, 1.1301711, 1.1301711]],
[[0.6887394, 0.6887394, 0.6887394, 0.6887394],
[0.22089851, 0.22089851, 0.22089851, 0.22089851]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0.605832, 0.605832, 0.605832, 0.605832],
[0.92364264, 0.92364264, 0.92364264, 0.92364264]],
[[0.23089725, 0.23089725, 0.23089725, 0.23089725],
[0.5568468, 0.5568468, 0.5568468, 0.5568468]]]]).float()
expected_centers_grad = torch.tensor(
[[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[-1.0493311, -1.0493311, -1.0493311, -1.0493311],
[-2.0301602, -2.0301602, -2.0301602, -2.0301602]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[-1.6328557, -1.6328557, -1.6328557, -1.6328557],
[-3.1828144, -3.1828144, -3.1828144, -3.1828144]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]]],
[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[-1.5429721, -1.5429721, -1.5429721, -1.5429721],
[-1.6100934, -1.6100934, -1.6100934, -1.6100934]],
[[-1.7103812, -1.7103812, -1.7103812, -1.7103812],
[-1.6344175, -1.6344175, -1.6344175, -1.6344175]]]]).float()
assert torch.allclose(
scores.grad.detach().cpu(), expected_scores_grad, atol=1e-6)
assert torch.allclose(
points.grad.detach().cpu(), expected_points_grad, atol=1e-6)
assert torch.allclose(
centers.grad.detach().cpu(), expected_centers_grad, atol=1e-6)
loss = output.sum()
loss.backward()
expected_scores_grad = torch.tensor([[[[0.04288036, -0.18217683],
[-0.78873926, 0.7485497],
[-0.6866992, 0.05346543],
[0.04288036, -0.18217683]],
[[-1.1407862, 0.13533896],
[-0.06964391, -0.22948086],
[-1.1407862, 0.13533896],
[-0.06964391, -0.22948086]]],
[[[-0.3363995, -2.212181],
[-1.1589496, -2.7724311],
[-0.9387654, -1.3163853],
[-1.4385346, -1.0614843]],
[[-0.5048497, 1.4143617],
[-0.47332114, 0.6017133],
[-0.30974793, 1.1995442],
[-0.5048497, 1.4143617]]]]).float()
expected_points_grad = torch.tensor(
[[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0.15585709, 0.15585709, 0.15585709, 0.15585709],
[1.1893613, 1.1893613, 1.1893613, 1.1893613]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[1.6530733, 1.6530733, 1.6530733, 1.6530733],
[1.8130021, 1.8130021, 1.8130021, 1.8130021]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0.58863074, 0.58863074, 0.58863074, 0.58863074],
[1.3727596, 1.3727596, 1.3727596, 1.3727596]],
[[0.28462553, 0.28462553, 0.28462553, 0.28462553],
[0.8378516, 0.8378516, 0.8378516, 0.8378516]]],
[[[0.13817799, 0.13817799, 0.13817799, 0.13817799],
[0.34856772, 0.34856772, 0.34856772, 0.34856772]],
[[0.7405102, 0.7405102, 0.7405102, 0.7405102],
[0.06438422, 0.06438422, 0.06438422, 0.06438422]],
[[0.8491963, 0.8491963, 0.8491963, 0.8491963],
[1.1301711, 1.1301711, 1.1301711, 1.1301711]],
[[0.6887394, 0.6887394, 0.6887394, 0.6887394],
[0.22089851, 0.22089851, 0.22089851, 0.22089851]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0.605832, 0.605832, 0.605832, 0.605832],
[0.92364264, 0.92364264, 0.92364264, 0.92364264]],
[[0.23089725, 0.23089725, 0.23089725, 0.23089725],
[0.5568468, 0.5568468, 0.5568468, 0.5568468]]]]).float()
expected_centers_grad = torch.tensor(
[[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[-1.0493311, -1.0493311, -1.0493311, -1.0493311],
[-2.0301602, -2.0301602, -2.0301602, -2.0301602]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[-1.6328557, -1.6328557, -1.6328557, -1.6328557],
[-3.1828144, -3.1828144, -3.1828144, -3.1828144]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]]],
[[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.]],
[[-1.5429721, -1.5429721, -1.5429721, -1.5429721],
[-1.6100934, -1.6100934, -1.6100934, -1.6100934]],
[[-1.7103812, -1.7103812, -1.7103812, -1.7103812],
[-1.6344175, -1.6344175, -1.6344175, -1.6344175]]]]).float()
assert torch.allclose(
scores.grad.detach().cpu(), expected_scores_grad, atol=1e-6)
assert torch.allclose(
points.grad.detach().cpu(), expected_points_grad, atol=1e-6)
assert torch.allclose(
centers.grad.detach().cpu(), expected_centers_grad, atol=1e-6)