Skip to content

Commit

Permalink
Merge pull request #657 from d4straub/fix-reporting
Browse files Browse the repository at this point in the history
Improve reporting
  • Loading branch information
d4straub authored Nov 10, 2023
2 parents 35e980f + 76e3db7 commit e6e000d
Show file tree
Hide file tree
Showing 3 changed files with 139 additions and 110 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### `Changed`

- [#657](https://github.com/nf-core/ampliseq/pull/657) - Improved parameter descriptions and sequence

### `Fixed`

- [#655](https://github.com/nf-core/ampliseq/pull/655) - Added `NUMBA_CACHE_DIR` to fix downstream analysis with QIIME2 that failed on some systems
- [#656](https://github.com/nf-core/ampliseq/pull/656) - Moved conda-check to script-section and replaced `exit 1` with `error()`
- [#657](https://github.com/nf-core/ampliseq/pull/657) - Corrected inaccurate reporting of QIIME2 taxonomic classifications and ASV length filtering

### `Dependencies`

Expand Down
32 changes: 17 additions & 15 deletions assets/report_template.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -370,7 +370,7 @@ cat(paste0("
Overall read quality profiles are displayed as heat map of the frequency of each quality score at each base position.
The mean quality score at each position is shown by the green line, and the quartiles of the quality score
distribution by the orange lines. The red line shows the scaled proportion of reads that extend to at least
that position. Original plots can be found [folder dada2/QC/](../dada2/QC/) with names that end in `_qual_stats.pdf`.
that position. Original plots can be found in folder [dada2/QC/](../dada2/QC/) with names that end in `_qual_stats.pdf`.
"))
```

Expand Down Expand Up @@ -426,8 +426,8 @@ cat(paste0("
Estimated error rates are displayed for each possible transition. The black line shows the estimated error rates after
convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal
definition of the Q-score. The estimated error rates (black line) should be a good fit to the observed rates
(points), and the error rates should drop with increased quality. Original plots can be found in
[folder dada2/QC/](../dada2/QC/) with names that end in `.err.pdf`.
(points), and the error rates should drop with increased quality. Original plots can be found in folder
[dada2/QC/](../dada2/QC/) with names that end in `.err.pdf`.
"))
```

Expand Down Expand Up @@ -724,9 +724,10 @@ if ( params$max_len_asv != 0 ) {
}
# replace 1 with 1.5 to display on log scale
filter_len_profile$Counts[filter_len_profile$Counts == 1] <- 1.5
filter_len_profile_replaced <- filter_len_profile
filter_len_profile_replaced$Counts[filter_len_profile_replaced$Counts == 1] <- 1.5
plot_filter_len_profile <- ggplot(filter_len_profile,
plot_filter_len_profile <- ggplot(filter_len_profile_replaced,
aes(x = Length, y = Counts)) +
geom_bar(stat = "identity", fill = rgb(0.1, 0.4, 0.75), width = 0.5) +
ylab("Number of ASVs") +
Expand Down Expand Up @@ -989,17 +990,18 @@ asv_tax <- read.table(params$qiime2_taxonomy, header = TRUE, sep = "\t")
asv_tax <- subset(asv_tax, select = Taxon)
# Remove greengenes85 ".__" placeholders
df = as.data.frame(lapply(asv_tax, function(x) gsub(".__", "", x)))
# remove all last, empty ;
df = as.data.frame(lapply(df, function(x) gsub(" ;","",x)))
df = as.data.frame(lapply(asv_tax, function(x) gsub(" .__", "", x)))
# remove all empty ;
df = as.data.frame(lapply(df, function(x) gsub(";;","",x)))
# remove last remaining, empty ;
df = as.data.frame(lapply(df, function(x) gsub("; $","",x)))
df = as.data.frame(lapply(df, function(x) gsub(";$","",x)))
# get maximum amount of taxa levels per ASV
max_taxa <- lengths(regmatches(df$Taxon, gregexpr("; ", df$Taxon)))+1
max_taxa <- lengths(regmatches(df$Taxon, gregexpr(";", df$Taxon)))+1
# Currently, all QIIME2 databases seem to have the same levels!
# Currently, all QIIME2 databases seem to have the same levels! But for compatibility, restrict number of levels to max_taxa
level <- c("Kingdom","Phylum","Class","Order","Family","Genus","Species")
level <- head(level, n = max(max_taxa) )
# Calculate the classified numbers/percent of asv
n_asv_tax = nrow(asv_tax)
Expand Down Expand Up @@ -1811,7 +1813,7 @@ if ( !isFALSE(params$dada2_ref_tax_title) ) {
"- citation: `", params$dada2_ref_tax_citation, "`\n\n", sep = "")
} else if (!isFALSE(params$dada2_taxonomy)) {
cat("Taxonomic classification by DADA2:\n\n",
"- database: unknown - user provided\n\n", sep = "")
"- database: user provided file(s)\n\n", sep = "")
}
if ( !isFALSE(params$sintax_ref_tax_title) ) {
Expand All @@ -1821,7 +1823,7 @@ if ( !isFALSE(params$sintax_ref_tax_title) ) {
"- citation: `", params$sintax_ref_tax_citation, "`\n\n", sep = "")
} else if (!isFALSE(params$sintax_taxonomy)) {
cat("Taxonomic classification by SINTAX:\n\n",
"- database: unknown - user provided\n\n", sep = "")
"- database: user provided file\n\n", sep = "")
}
if ( !isFALSE(params$kraken2_ref_tax_title) ) {
Expand All @@ -1831,7 +1833,7 @@ if ( !isFALSE(params$kraken2_ref_tax_title) ) {
"- citation: `", params$kraken2_ref_tax_citation, "`\n\n", sep = "")
} else if (!isFALSE(params$kraken2_taxonomy)) {
cat("Taxonomic classification by Kraken2:\n\n",
"- database: unknown - user provided\n\n", sep = "")
"- database: user provided files\n\n", sep = "")
}
if ( !isFALSE(params$qiime2_ref_tax_title) ) {
Expand All @@ -1841,7 +1843,7 @@ if ( !isFALSE(params$qiime2_ref_tax_title) ) {
"- citation: `", params$qiime2_ref_tax_citation, "`\n\n", sep = "")
} else if (!isFALSE(params$qiime2_taxonomy)) {
cat("Taxonomic classification by QIIME2:\n\n",
"- database: unknown - user provided\n\n", sep = "")
"- database: user provided file\n\n", sep = "")
}
```

Expand Down
Loading

0 comments on commit e6e000d

Please sign in to comment.