Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce indirection and memory overhead for slot maps. #1782

Merged
merged 1 commit into from
Jan 9, 2025

Conversation

aardvark179
Copy link
Contributor

@aardvark179 aardvark179 commented Dec 30, 2024

Reducing the property related memory overhead of JavaScript objects.

Current slot map model

Currently JavaScript Objects in RHino store their properties in slot map, which is held by a slot map container. The map itself then either holds an array, or some other collection structure, which actually holds the slots. So the structure looks something like this:

graph LR
Object["ScriptableObject"]
Container["SlotMapContainer"]
Map["SlotMap"]
Array["Slot[]"]
Slot1["Slot"]
Slot2["Slot"]
Slot3["Slot"]
Object1["ScriptableObject"]
Container1["SlotMapContainer"]
Map1["SlotMap"]
Array1["Slot[]"]
Slot4["Slot"]
Slot5["Slot"]
Slot6["Slot"]
Object --> Container --> Map --> Array
Array --> Slot1
Array --> Slot2
Array --> Slot3
Object1 --> Container1 --> Map1 --> Array1
Array1 --> Slot4
Array1 --> Slot5
Array1 --> Slot6
Loading

And in any environment which relies on thread safe slot map handling there is an additional stamped lock object like this:

graph LR
Object["ScriptableObject"]
Container["SlotMapContainer"]
Lock["StampedLock"]
Map["SlotMap"]
Array["Slot[]"]
Slot1["Slot"]
Slot2["Slot"]
Slot3["Slot"]
Object --> Container --> Map --> Array
Container --> Lock
Array --> Slot1
Array --> Slot2
Array --> Slot3
Object1["ScriptableObject"]
Container1["SlotMapContainer"]
Lock1["StampedLock"]
Map1["SlotMap"]
Array1["Slot[]"]
Slot4["Slot"]
Slot5["Slot"]
Slot6["Slot"]
Object1 --> Container1 --> Map1 --> Array1
Container1 --> Lock1
Array1 --> Slot4
Array1 --> Slot5
Array1 --> Slot6
Loading

There is one optimisation here, in that the arrays for slots in an EmbeddedSlotMap are not created until slots are stored in the map, but all the other objects are created eagerly. If I look at a heap dump from one of our production systems and analyse the number of properties stored in slot maps then we see the following:

No. of props Count Cummulative count Cummulative %
0 113,538 113,538 76.6428827
1 28,013 141,551 95.5528254
2 1,243 142,794 96.3919022
3 1,965 144,759 97.7183591
4 426 145,185 98.0059269

The remaining objects are distributed over a fairly wide range.

The prevalence of zero size slot maps may be surprising, but is due to the large number of common objects that are implemented in Rhino itself as IdScriptableObjects with built in properties not held as real slots (functions, strings, arrays, wrapped native Java methods, etc.). This means we pay a significant memory overhead on the 75% of objects that will never have properties, and we aren't optimising for the remaining commons case of a single property. This type of property map size distribution appears consistent with my experience on TruffleRuby and other dynamic language implementations, so I would expect roughly similar distributions for other users.

In our particular case we have a small number of objects shared between threads, and so enable thread safety, so we pay for a lock with every one of these objects.

The memory overheads we incur are as follows (on a 64bit JVM with compact oops

Object Size
SlotMapContainer 24
StampedLocked 48
EmbeddedSlotMap 32
Slot[] 16 + 4 * (size rounded up)

Combined with the data on object sizes about this gives us total sizes as follows

No. of props Object size Thread safe object size Count Size * Count Thread safe size * Count
0 56 104 113538 6358128 11807952
1 88 136 28013 2465144 3809768
2 88 136 1243 109384 169048
3 88 136 1965 172920 267240
4 88 136 426 37488 57936

Reducing indirection

Ideally we would want the common cases to incur as little overhead as possible, and potential store a small number of properties within the ScriptableObject itself if that significantly reduced overhead. Short of that we can optimise for the common cases and change the existing slot map promotion chain of:

graph LR
EmbededdedSlotMap --> HashSlotMap
Loading

to something more like:

graph LR
EmptySlotMap --> SingleEntrySlotMap --> EmbededdedSlotMap --> HashSlotMap
Loading

I do not propose to embed slots in the ScriptableObjects themselves at this time, but instead exploit the fact that we can use a singular immutable empty slot map; refactor out the slot map container for single threaded use; introduce a single entry slot map to reduce overhead and indirection in the remaining common case; and finally remove the use of slot map containers in the multi-threaded case.

PRs

I've split this into a number of stacked PRs detailed below

Introduce a singleton EMPTY_SLOT_MAP (#1782)

This PR.

Introduces a singleton EMPTY_SLOT_MAP reducing the common empty case to

graph LR
Object["ScriptableObject"]
Container["SlotMapContainer"]
Map["EMPTY_SLOT_MAP"]
Object1["ScriptableObject"]
Container1["SlotMapContainer"]
Object --> Container --> Map
Object1 --> Container1 --> Map
Loading

This saves 32 bytes per object with an empty property map.

Start to factor out slot map container (#1783)

Introduces the concept of a SlotMapOwner and refactors ScritableObject and SlotMapContainer to inherit from SlotMapOwner. The slot maps themselves are made responsible for promotions themselves via the SlotMapOwner. As well as reducing the amount of indirection needed to access the slots it also means we can avoid promotion checks except when we know the collection might overflow some internal limit (for example, when the array in EmbeddedSlotMap would be expanded). This changes the empty map case to:

graph LR
Object["ScriptableObject"]
Map["EMPTY_SLOT_MAP"]
Object1["ScriptableObject"]
Object --> Map
Object1 --> Map
Loading

and the occupied map case to

graph LR
Object["ScriptableObject"]
Map["SlotMap"]
Array["Slot[]"]
Slot1["Slot"]
Slot2["Slot"]
Slot3["Slot"]
Object1["ScriptableObject"]
Map1["SlotMap"]
Array1["Slot[]"]
Slot4["Slot"]
Slot5["Slot"]
Slot6["Slot"]
Object --> Map --> Array
Array --> Slot1
Array --> Slot2
Array --> Slot3
Object1 --> Map1 --> Array1
Array1 --> Slot4
Array1 --> Slot5
Array1 --> Slot6
Loading

Single-entry slot maps (#1784)

Introduces an immutable single-entry slot map. It is immutable and always promotes to EmbeddedSlotMap to make its future use in multi-threaded cases easier, but also because it seems like a reasonable assumption that any single-entry slot map that is mutated is likely to continue being mutated.

This changes the single slot case to:

graph LR
Object["ScriptableObject"]
Map["SingleEntrySlotMap"]
Slot1["Slot"]
Object1["ScriptableObject"]
Map1["SingleEntrySlotMap"]
Slot2["Slot"]
Object --> Map --> Slot1
Object1 --> Map1 --> Slot2
Loading

Introduce thread safe versions of slot maps (#1785)

Introduces an API on slot map owner to do a compare and swap of the current slot map to enable thread safe promotion of maps, and introduces thread safe versions of the slot map types which handle locking where necessary. We avoid the use of locks on empty and single entry maps as they are immutable, and introduce APIS and share locks between further promotions to avoid the overhead of an additional container.

Benchmark comparison

Benchmark scores are roughly neutral, some are gains, some gain performance on the two full runs I performed, and some lost performance, but they all show a degree of instability on repeated runs.

Benchmark (interpreted) Mode Cnt Old Score Old Error New Score New Error Units % Gain % Error
BuiltinBenchmark.annotatedClassMethods false avgt 5 21.521 0.215 25.207 0.359 us/op -17.127457 1.4242076
BuiltinBenchmark.annotatedClassMethods true avgt 5 146.907 18.851 125.198 1.876 us/op 14.777376 1.4984265
BuiltinBenchmark.dumbLambdaClassMethods false avgt 5 18.682 0.470 18.261 0.202 us/op 2.2535060 1.1061826
BuiltinBenchmark.dumbLambdaClassMethods true avgt 5 149.805 4.646 123.110 1.675 us/op 17.819832 1.3605718
BuiltinBenchmark.idClassMethods false avgt 5 25.316 1.140 22.394 2.280 us/op 11.542108 10.181299
BuiltinBenchmark.idClassMethods true avgt 5 141.918 5.423 122.982 1.360 us/op 13.342916 1.1058529
MathBenchmark.addConstantFloats false avgt 5 8.819 0.248 8.543 0.111 ns/op 3.1296065 1.2993094
MathBenchmark.addConstantFloats true avgt 5 192.417 7.392 176.734 6.012 ns/op 8.1505272 3.4017224
MathBenchmark.addConstantInts false avgt 5 8.258 0.146 8.469 0.126 ns/op -2.5550981 1.4877790
MathBenchmark.addConstantInts true avgt 5 182.400 0.414 186.263 1.745 ns/op -2.1178728 0.93684736
MathBenchmark.addIntAndConstant false avgt 5 11.183 0.680 11.310 0.142 ns/op -1.1356523 1.2555261
MathBenchmark.addIntAndConstant true avgt 5 274.836 3.912 276.018 8.103 ns/op -0.43007466 2.9356781
MathBenchmark.addMixedStrings false avgt 5 36.016 0.971 36.450 0.619 ns/op -1.2050200 1.6982167
MathBenchmark.addMixedStrings true avgt 5 278.977 3.535 269.311 3.058 ns/op 3.4648018 1.1354902
MathBenchmark.addStringsInLoop false avgt 5 84.544 7.452 84.872 2.305 ns/op -0.38796366 2.7158545
MathBenchmark.addStringsInLoop true avgt 5 843.004 13.554 909.288 46.029 ns/op -7.8628334 5.0620925
MathBenchmark.addTwoFloats false avgt 5 24.307 49.848 14.623 5.111 ns/op 39.840375 34.951788
MathBenchmark.addTwoFloats true avgt 5 355.543 7.334 370.175 24.142 ns/op -4.1153953 6.5217802
MathBenchmark.addTwoInts false avgt 5 14.168 0.225 15.857 0.199 ns/op -11.921231 1.2549663
MathBenchmark.addTwoInts true avgt 5 367.576 11.698 349.172 3.876 ns/op 5.0068557 1.1100546
MathBenchmark.bitwiseAnd false avgt 5 14.792 1.144 14.448 0.263 ns/op 2.3255814 1.8203212
MathBenchmark.bitwiseAnd true avgt 5 359.100 3.495 353.973 2.887 ns/op 1.4277360 0.81559893
MathBenchmark.bitwiseLsh false avgt 5 14.166 0.181 15.366 0.185 ns/op -8.4709869 1.2039568
MathBenchmark.bitwiseLsh true avgt 5 340.105 9.303 307.955 17.735 ns/op 9.4529631 5.7589583
MathBenchmark.bitwiseOr false avgt 5 14.521 0.117 15.786 4.163 ns/op -8.7115212 26.371468
MathBenchmark.bitwiseOr true avgt 5 365.443 3.158 349.798 1.803 ns/op 4.2811054 0.51544034
MathBenchmark.bitwiseRsh false avgt 5 13.753 0.148 14.356 0.162 ns/op -4.3844979 1.1284480
MathBenchmark.bitwiseRsh true avgt 5 328.926 3.579 311.810 4.052 ns/op 5.2036020 1.2995093
MathBenchmark.bitwiseSignedRsh false avgt 5 13.575 0.261 14.134 0.158 ns/op -4.1178637 1.1178718
MathBenchmark.bitwiseSignedRsh true avgt 5 360.686 6.364 347.190 2.527 ns/op 3.7417588 0.72784354
MathBenchmark.subtractFloats false avgt 5 11.270 0.119 11.309 0.114 ns/op -0.34605146 1.0080467
MathBenchmark.subtractFloats true avgt 5 280.508 9.309 271.140 2.755 ns/op 3.3396552 1.0160803
MathBenchmark.subtractInts false avgt 5 11.780 0.558 11.865 0.131 ns/op -0.72156197 1.1040877
MathBenchmark.subtractInts true avgt 5 274.109 16.658 272.634 2.526 ns/op 0.53810710 0.92651687
MathBenchmark.subtractTwoFloats false avgt 5 14.159 0.572 14.389 0.107 ns/op -1.6244085 0.74362360
MathBenchmark.subtractTwoFloats true avgt 5 350.104 9.883 346.064 4.471 ns/op 1.1539428 1.2919576
ObjectBenchmark.accessFields false avgt 5 0.062 0.001 0.073 0.005 us/op -17.741935 6.8493151
ObjectBenchmark.accessFields true avgt 5 0.507 0.020 0.557 0.005 us/op -9.8619329 0.89766607
ObjectBenchmark.createFields false avgt 5 46.803 0.878 47.669 0.320 us/op -1.8503087 0.67129581
ObjectBenchmark.createFields true avgt 5 318.915 4.921 348.613 5.578 us/op -9.3121992 1.6000551
ObjectBenchmark.deleteFields false avgt 5 0.066 0.001 0.073 0.001 us/op -10.606061 1.3698630
ObjectBenchmark.deleteFields true avgt 5 0.475 0.005 0.523 0.014 us/op -10.105263 2.6768642
ObjectBenchmark.iterateFields false avgt 5 82.580 1.017 83.256 4.002 us/op -0.81860015 4.8068608
ObjectBenchmark.iterateFields true avgt 5 227.787 28.930 230.405 2.585 us/op -1.1493193 1.1219375
ObjectBenchmark.ownKeysFields false avgt 5 79.724 0.650 78.692 0.928 us/op 1.2944659 1.1792812
ObjectBenchmark.ownKeysFields true avgt 5 81.579 7.778 79.953 1.003 us/op 1.9931600 1.2544870
PropertyBenchmark.addTwoProperties false avgt 5 8.999 0.129 8.763 0.137 ns/op 2.6225136 1.5633915
PropertyBenchmark.addTwoProperties true avgt 5 101.038 1.496 106.104 1.081 ns/op -5.0139551 1.0188117
PropertyBenchmark.createObject false avgt 5 169.871 2.012 96.735 1.937 ns/op 43.053847 2.0023776
PropertyBenchmark.createObject true avgt 5 240.923 3.740 206.758 1.446 ns/op 14.180879 0.69936834
PropertyBenchmark.createObjectFieldByField false avgt 5 169.260 4.393 85.181 1.198 ns/op 49.674465 1.4064169
PropertyBenchmark.createObjectFieldByField true avgt 5 324.056 5.682 377.576 6.570 ns/op -16.515664 1.7400470
PropertyBenchmark.getOneProperty false avgt 5 7.139 0.073 7.306 0.096 ns/op -2.3392632 1.3139885
PropertyBenchmark.getOneProperty true avgt 5 34.944 0.642 35.038 0.605 ns/op -0.26900183 1.7266967
SlotMapBenchmark.embeddedInsert1Key N/A avgt 5 1.047 0.020 1.061 0.013 ns/op -1.3371538 1.2252592
SlotMapBenchmark.embeddedQueryKey100Entries N/A avgt 5 0.805 0.057 0.804 0.008 ns/op 0.12422360 0.99502488
SlotMapBenchmark.embeddedQueryKey10Entries N/A avgt 5 0.664 0.006 0.673 0.008 ns/op -1.3554217 1.1887073
SlotMapBenchmark.hashInsert1Key N/A avgt 5 5.426 0.724 5.608 0.107 ns/op -3.3542204 1.9079886
SlotMapBenchmark.hashQueryKey100Entries N/A avgt 5 1.254 0.018 1.256 0.012 ns/op -0.15948963 0.95541401
SlotMapBenchmark.hashQueryKey10Entries N/A avgt 5 1.131 0.011 1.172 0.017 ns/op -3.6251105 1.4505119
StartupBenchmark.startUpRhino N/A avgt 5 14.145 0.254 13.478 0.878 us/op 4.7154472 6.5143196
SunSpiderBenchmark.AccessBinaryTreesState.accessBinaryTrees false avgt 5 4215.743 79.865 3792.279 261.463 us/op 10.044825 6.8946140
SunSpiderBenchmark.AccessBinaryTreesState.accessBinaryTrees true avgt 5 33492.688 368.416 35512.264 18864.755 us/op -6.0299012 53.121803
SunSpiderBenchmark.AccessFannAccessNsieveState.accessNsieve false avgt 5 2870.759 205.348 2219.509 79.610 us/op 22.685638 3.5868293
SunSpiderBenchmark.AccessFannAccessNsieveState.accessNsieve true avgt 5 102711.650 2874.606 112870.312 3339.730 us/op -9.8904671 2.9589092
SunSpiderBenchmark.AccessFannkuchState.accessFannkuch false avgt 5 6615.882 191.768 6363.320 102.694 us/op 3.8175107 1.6138431
SunSpiderBenchmark.AccessFannkuchState.accessFannkuch true avgt 5 193440.347 4971.624 199674.221 4812.636 us/op -3.2226338 2.4102440
SunSpiderBenchmark.AccessNBodyState.accessNBody false avgt 5 7902.119 1583.218 10779.537 628.571 us/op -36.413246 5.8311503
SunSpiderBenchmark.AccessNBodyState.accessNBody true avgt 5 89853.993 1003.660 99411.506 856.333 us/op -10.636715 0.86140230
SunSpiderBenchmark.Bitops3BitState.bitops3BitBitsInByte false avgt 5 864.472 27.466 880.893 28.433 us/op -1.8995410 3.2277473
SunSpiderBenchmark.Bitops3BitState.bitops3BitBitsInByte true avgt 5 73874.685 1188.332 76124.145 709.665 us/op -3.0449673 0.93224692
SunSpiderBenchmark.BitopsAndState.bitopsBitwiseAnd false avgt 5 29084.840 3475.464 14485.668 2191.559 us/op 50.195126 15.129154
SunSpiderBenchmark.BitopsAndState.bitopsBitwiseAnd true avgt 5 70984.414 641.453 73832.491 761.945 us/op -4.0122568 1.0319915
SunSpiderBenchmark.BitopsBitsState.bitopsBitsInByte false avgt 5 973.839 98.603 1022.713 49.686 us/op -5.0186941 4.8582545
SunSpiderBenchmark.BitopsBitsState.bitopsBitsInByte true avgt 5 98937.234 1332.956 100312.942 1340.841 us/op -1.3904856 1.3366580
SunSpiderBenchmark.BitopsNsieveState.bitopsNsieveBits false avgt 5 4287.363 112.761 3542.270 36.620 us/op 17.378818 1.0338004
SunSpiderBenchmark.BitopsNsieveState.bitopsNsieveBits true avgt 5 84830.381 2141.095 89398.150 3367.636 us/op -5.3845909 3.7670086
SunSpiderBenchmark.CryptoAesState.cryptoAes false avgt 5 5212.191 80.142 4985.114 71.585 us/op 4.3566516 1.4359752
SunSpiderBenchmark.CryptoAesState.cryptoAes true avgt 5 53519.802 841.627 55419.398 599.505 us/op -3.5493330 1.0817602
SunSpiderBenchmark.CryptoMd5State.cryptoMd5 false avgt 5 4477.072 74.629 4299.079 43.832 us/op 3.9756564 1.0195672
SunSpiderBenchmark.CryptoMd5State.cryptoMd5 true avgt 5 41742.866 831.995 42974.484 463.523 us/op -2.9504874 1.0786005
SunSpiderBenchmark.CryptoShaState.cryptoSha1 false avgt 5 3084.482 88.514 2570.779 21.558 us/op 16.654433 0.83857850
SunSpiderBenchmark.CryptoShaState.cryptoSha1 true avgt 5 47429.860 1369.206 47267.275 4464.666 us/op 0.34279039 9.4455752
SunSpiderBenchmark.DateFormatToFteState.dateFormatToFte false avgt 5 7751.395 427.961 7953.029 236.523 us/op -2.6012608 2.9739990
SunSpiderBenchmark.DateFormatToFteState.dateFormatToFte true avgt 5 34734.364 867.207 36405.110 478.431 us/op -4.8100665 1.3141864
SunSpiderBenchmark.DateFormatXparbState.dateFormatXparb false avgt 5 15948.911 675.946 14625.379 252.648 us/op 8.2985729 1.7274629
SunSpiderBenchmark.DateFormatXparbState.dateFormatXparb true avgt 5 23119.470 227.553 23493.920 282.401 us/op -1.6196306 1.2020174
SunSpiderBenchmark.MathCordicState.mathCordic false avgt 5 4405.314 53.462 4547.668 55.890 us/op -3.2314155 1.2289815
SunSpiderBenchmark.MathCordicState.mathCordic true avgt 5 141308.798 7728.749 126202.312 1208.821 us/op 10.690407 0.95784378
SunSpiderBenchmark.MathPartialState.mathPartialSums false avgt 5 12464.984 471.334 13806.067 212.468 us/op -10.758802 1.5389466
SunSpiderBenchmark.MathPartialState.mathPartialSums true avgt 5 60192.493 889.795 58942.605 561.784 us/op 2.0764849 0.95310345
SunSpiderBenchmark.MathSpectralNormState.mathSpectralNorm false avgt 5 630.957 9.622 752.299 10.758 us/op -19.231421 1.4300165
SunSpiderBenchmark.MathSpectralNormState.mathSpectralNorm true avgt 5 45405.061 892.770 45383.445 528.752 us/op 0.047607028 1.1650768
SunSpiderBenchmark.RecursiveState.controlflowRecursive false avgt 5 1527.656 23.848 1580.938 88.109 us/op -3.4878271 5.5732103
SunSpiderBenchmark.RecursiveState.controlflowRecursive true avgt 5 45491.450 2522.202 44252.907 299.934 us/op 2.7225841 0.67777242
SunSpiderBenchmark.RegexpState.regexpDna false avgt 5 45726.300 858.063 45577.969 4585.112 us/op 0.32438881 10.059930
SunSpiderBenchmark.RegexpState.regexpDna true avgt 5 45387.522 896.888 45677.837 450.440 us/op -0.63963615 0.98612375
SunSpiderBenchmark.StringBase64State.stringBase64 false avgt 5 7323.512 168.637 7850.049 58.964 us/op -7.1896789 0.75112907
SunSpiderBenchmark.StringBase64State.stringBase64 true avgt 5 43562.706 711.527 48341.457 971.829 us/op -10.969821 2.0103428
SunSpiderBenchmark.StringFastaState.stringFasta false avgt 5 11490.173 124.971 12057.432 133.057 us/op -4.9369056 1.1035269
SunSpiderBenchmark.StringFastaState.stringFasta true avgt 5 70060.273 1162.633 66996.399 371.257 us/op 4.3731973 0.55414471
SunSpiderBenchmark.StringTagcloudState.stringTagcloud false avgt 5 16212.874 266.513 16595.346 401.539 us/op -2.3590635 2.4195880
SunSpiderBenchmark.StringTagcloudState.stringTagcloud true avgt 5 38023.062 652.512 37029.902 1521.375 us/op 2.6119937 4.1085040
SunSpiderBenchmark.StringUnpackState.stringUnpackCode false avgt 5 13583.510 375.019 13936.242 197.378 us/op -2.5967662 1.4162929
SunSpiderBenchmark.StringUnpackState.stringUnpackCode true avgt 5 29042.402 394.761 32275.857 110.125 us/op -11.133566 0.34119931
SunSpiderBenchmark.StringValidateState.stringValidateInput false avgt 5 6712.011 445.466 6848.257 121.288 us/op -2.0298834 1.7710784
SunSpiderBenchmark.StringValidateState.stringValidateInput true avgt 5 37554.862 523.600 35878.264 526.572 us/op 4.4643966 1.4676630
SunSpiderBenchmark.ThreeDCubeState.threeDCube false avgt 5 3843.477 50.124 3821.218 58.373 us/op 0.57913707 1.5276019
SunSpiderBenchmark.ThreeDCubeState.threeDCube true avgt 5 81855.773 1156.971 82086.928 1273.475 us/op -0.28239303 1.5513737
SunSpiderBenchmark.ThreeDMorphState.threeDMorph false avgt 5 6118.231 89.437 5176.360 184.973 us/op 15.394499 3.5734184
SunSpiderBenchmark.ThreeDMorphState.threeDMorph true avgt 5 99530.914 10876.330 105509.979 867.381 us/op -6.0072441 0.82208433
SunSpiderBenchmark.ThreeDRayState.threeDRayTrace false avgt 5 5194.259 134.927 4992.991 97.742 us/op 3.8748164 1.9575841
SunSpiderBenchmark.ThreeDRayState.threeDRayTrace true avgt 5 66232.530 721.436 62805.470 539.075 us/op 5.1742852 0.85832492
V8Benchmark.boyer false avgt 5 41470.547 702.090 37794.096 465.216 us/op 8.8652098 1.2309224
V8Benchmark.boyer true avgt 5 256933.199 3583.252 245761.334 3474.153 us/op 4.3481594 1.4136288
V8Benchmark.cryptoDecrypt false avgt 5 35013.038 591.379 38285.726 557.370 us/op -9.3470552 1.4558167
V8Benchmark.cryptoDecrypt true avgt 5 680021.678 23241.467 694427.887 127854.307 us/op -2.1184926 18.411459
V8Benchmark.cryptoEncrpyt false avgt 5 2109.576 49.195 2388.464 153.436 us/op -13.220097 6.4240449
V8Benchmark.cryptoEncrpyt true avgt 5 35262.902 1498.064 35567.578 5629.968 us/op -0.86401284 15.828933
V8Benchmark.deltaBlue false avgt 5 2739.431 38.602 2983.660 738.029 us/op -8.9153185 24.735694
V8Benchmark.deltaBlue true avgt 5 18041.310 243.068 23405.338 341.166 us/op -29.731921 1.4576418
V8Benchmark.earley false avgt 5 9913.887 97.453 10065.755 163.166 us/op -1.5318714 1.6210011
V8Benchmark.earley true avgt 5 19281.331 367.104 19301.104 209.699 us/op -0.10254997 1.0864612
V8Benchmark.rayTrace false avgt 5 24030.710 251.571 22165.706 1328.762 us/op 7.7609193 5.9946748
V8Benchmark.rayTrace true avgt 5 93965.848 1193.860 88427.095 1228.630 us/op 5.8944320 1.3894271
V8Benchmark.richards false avgt 5 1657.980 34.761 1710.126 31.242 us/op -3.1451525 1.8268829
V8Benchmark.richards true avgt 5 9381.922 129.274 9284.463 127.235 us/op 1.0387957 1.3704077
V8Benchmark.splay false avgt 5 1149.642 209.171 1078.130 135.130 us/op 6.2203712 12.533739
V8Benchmark.splay true avgt 5 4931.381 890.335 4727.164 716.615 us/op 4.1411726 15.159512

@gbrail
Copy link
Collaborator

gbrail commented Dec 30, 2024

This and other SlotMap changes look great, and I agree it's important to pay attention to this part of Rhino that's so performance-critical. However I don't want to rush these, and don't want to include them in 1.8.0, and will likely want to spend more time with them after the new year.

@aardvark179
Copy link
Contributor Author

That’s totally fair @gbrail, I think I’d be more worried if you were YOLOing a change like this.

@aardvark179
Copy link
Contributor Author

Made a minor edit to the PR description because I wrote the wrong size for embedded slot map, it was 32 bytes, not 24.

@gbrail
Copy link
Collaborator

gbrail commented Jan 9, 2025

Looks good so far! I appreciate the attention to detail and the documentation! I'll keep working through these.

@gbrail gbrail merged commit 79c31a7 into mozilla:master Jan 9, 2025
3 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants