Skip to content

mmaiergerber/image_tabular

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

image_tabular

Integrate image and tabular data for deep learning.

Install

pip install image_tabular

How to use

This library utilizes fastai and pytorch to integrate image and tabular data for deep learning and train a joint model using the integrated data.

title

Image source: N. Gessert, M. Nielsen and M. Shaikh et al. / MethodsX 7 (2020) 100864
  1. Please first prepare image and tabular data separately as fastai LabelLists, and then integrate them using the get_imagetabdatasets function as below:
integrate_train, integrate_valid, integrate_test = get_imagetabdatasets(image_data, tab_data)
  1. The train, validation, and optional test datasets can then be combined in a DataBunch:
db = DataBunch.create(integrate_train, integrate_valid, integrate_test,
                      path=data_path, bs=bs)
  1. Next, we create a joint model to train on both image and tabular data simultaneously:
integrate_model = CNNTabularModel(cnn_model,
                                  tabular_model,
                                  layers = [cnn_out_sz + tab_out_sz, 32],
                                  ps=0.2,
                                  out_sz=2).to(device)
  1. Finally, we pack everying into a fastai learner and train the joint model:
learn = Learner(db, integrate_model)
learn.fit_one_cycle(10, 1e-4)

The following notebook puts everything together and shows how to use the library for the SIIM-ISIC Melanoma Classification competition on Kaggle:

SIIM-ISIC Integrated Model

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.6%
  • Python 1.3%
  • Makefile 0.1%