Releases: mlverse/tabnet
Releases · mlverse/tabnet
tabnet 0.6.0
New features
- parsnip models now allow transparently passing case weights through
workflows::add_case_weights()
parameters (#151) - parsnip models now support
tabnet_model
andfrom_epoch
parameters (#143)
Bugfixes
- Adapt
tune::finalize_workflow()
test to {parsnip} v1.2 breaking change. (#155) autoplot()
now position the "has_checkpoint" points correctly when atabnet_fit()
is continuing a previous training usingtabnet_model =
. (#150)- Explicitely warn that
tabnet_model
option will not be used intabnet_pretrain()
tasks. (#150)
tabnet 0.5.0
New features
- {tabnet} now allows hierarchical multi-label classification through {data.tree} hierarchical
Node
dataset. (#126) tabnet_pretrain()
now allows different GLU blocks in GLU layers in encoder and in decoder through theconfig()
parametersnum_idependant_decoder
andnum_shared_decoder
(#129)- Add
reduce_on_plateau
as option forlr_scheduler
attabnet_config()
(@SvenVw, #120) - use zeallot internally with %<-% for code readability (#133)
- add FR translation (#131)
tabnet 0.4.0
New features
- Add explicit legend in
autoplot.tabnet_fit()
(#67) - Improve unsupervised vignette content. (#67)
tabnet_pretrain()
now allows missing values in predictors. (#68)tabnet_explain()
now works fortabnet_pretrain
models. (#68)- Allow missing-values values in predictor for unsupervised training. (#68)
- Improve performance of
random_obfuscator()
torch_nn module. (#68) - Add support for early stopping (#69)
tabnet_fit()
andpredict()
now allow missing values in predictors. (#76)tabnet_config()
now supports anum_workers=
parameters to control parallel dataloading (#83)- Add a vignette on missing data (#83)
tabnet_config()
now has a flagskip_importance
to skip calculating feature importance (@egillax, #91)- Export and document
tabnet_nn
- Added
min_grid.tabnet
method fortune
(@cphaarmeyer, #107) - Added
tabnet_explain()
method for parsnip models (@cphaarmeyer, #108) tabnet_fit()
andpredict()
now allow multi-outcome, all numeric or all factors but not mixed. (#118)
Bugfixes
tabnet_explain()
is now correctly handling missing values in predictors. (#77)dataloader
can now usenum_workers>0
(#83)- new default values for
batch_size
andvirtual_batch_size
improves performance on mid-range devices. - add default
engine="torch"
to tabnet parsnip model (#114) - fix
autoplot()
warnings turned into errors with {ggplot2} v3.4 (#113)
v0.3.0
v0.2.0
New features
- Allow model fine-tuning through passing a pre-trained model to
tabnet_fit()
(@cregouby, #26) - Explicit error in case of missing values (@cregouby, #24)
- Better handling of larger datasets when running
tabnet_explain()
. - Add
tabnet_pretrain()
for unsupervised pretraining (@cregouby, #29) - Add
autoplot()
of model loss among epochs (@cregouby, #36) - Added a
config
argument tofit() / pretrain()
so one can pass a pre-made config list. (#42) - In
tabnet_config()
, newmask_type
option withentmax
additional to defaultsparsemax
(@cmcmaster1, #48) - In
tabnet_config()
,loss
now also takes function (@cregouby, #55)
Bugfixes
- Fixed bug in GPU training. (#22)
- Fixed memory leaks when using custom autograd function.
- Batch predictions to avoid OOM error.
Internal improvements
- Added GPU CI. (#22)