-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
14 changed files
with
697 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
test* | ||
temp* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# docker build -t benchmark:latest . | ||
|
||
# Use an official Python runtime as a parent image | ||
FROM python:3.9 | ||
|
||
# Set the working directory in the container | ||
WORKDIR /benchmark | ||
|
||
# Copy the current directory contents into the container at /benchmark | ||
COPY . . | ||
|
||
# Install any needed packages specified in requirements.txt | ||
RUN pip install --no-cache-dir -r requirements.txt | ||
|
||
# Run script.py when the container launches | ||
ENTRYPOINT ["python", "benchmark.py"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# About | ||
|
||
This directory contains a script for running benchmarks (including energy comsumption) on models that are hosted on a dedicated inference server. The script is taken and modified from [vllm](https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/benchmarks/benchmark_serving.py) | ||
|
||
The current script supports TGI and vLLM. Before running the benchmark script, the inference server hosting the relevant model should be hosted. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
"""Taken and modified from vllm: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/benchmarks/benchmark_serving.py | ||
""" | ||
|
||
import argparse | ||
import asyncio | ||
import json | ||
import random | ||
import time | ||
import torch | ||
from typing import AsyncGenerator, List, Tuple | ||
|
||
import aiohttp | ||
import numpy as np | ||
from dataclasses import asdict, dataclass, field | ||
from tqdm.asyncio import tqdm | ||
from zeus.monitor import ZeusMonitor | ||
|
||
|
||
SYSTEM_PROMPT = "A chat between a human user (prompter) and an artificial intelligence (AI) assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. " | ||
|
||
|
||
@dataclass | ||
class Results: | ||
model: str | ||
backend: str | ||
request_rate: float | ||
num_failures: int = 0 | ||
system_prompt: str = SYSTEM_PROMPT | ||
total_time: float = 0.0 | ||
throughput: float = 0.0 | ||
total_prompt_tokens: int = 0.0 | ||
total_completion_tokens: int = 0.0 | ||
avg_latency: float = 0.0 | ||
avg_latency_per_token: float = 0.0 | ||
avg_latency_per_output_token: float = 0.0 | ||
server_total_energy: float = 0.0 | ||
server_energy_per_request: float = 0.0 | ||
server_energy_per_output_token: float = 0.0 | ||
local_zeus_total_energy: float = 0.0 | ||
local_zeus_energy_per_request: float = 0.0 | ||
local_zeus_energy_per_output_token: float = 0.0 | ||
results: list["Result"] = field(default_factory=list) | ||
|
||
|
||
@dataclass | ||
class Result: | ||
success: bool = True | ||
latency: float = 0.0 | ||
prompt: str = "" | ||
response: str = "" | ||
num_prompt_tokens: int = 0 | ||
num_completion_tokens: int = 0 | ||
energy: float = 0.0 | ||
|
||
|
||
def get_requests( | ||
dataset_path: str, | ||
) -> List[str]: | ||
# Load the dataset. | ||
with open(dataset_path) as f: | ||
dataset = json.load(f) | ||
# Only keep the first turn of each conversation. | ||
dataset = [data["conversations"][0]["value"] for data in dataset] | ||
|
||
return dataset | ||
|
||
|
||
async def get_request( | ||
input_requests: List[str], | ||
request_rate: float, | ||
) -> AsyncGenerator[Tuple[str, int, int], None]: | ||
input_requests = iter(input_requests) | ||
for i, request in enumerate(input_requests): | ||
yield i, request | ||
|
||
if request_rate == float("inf"): | ||
# If the request rate is infinity, then we don't need to wait. | ||
continue | ||
# Sample the request interval from the exponential distribution. | ||
interval = np.random.exponential(1.0 / request_rate) | ||
# The next request will be sent after the interval. | ||
await asyncio.sleep(interval) | ||
|
||
|
||
async def send_request( | ||
result: Result, | ||
backend: str, | ||
model: str, | ||
api_url: str, | ||
prompt: str, | ||
pbar: tqdm, | ||
) -> None: | ||
request_start_time = time.perf_counter() | ||
|
||
headers = {"Content-Type": "application/json"} | ||
# OpenAI Chat Completions API request format | ||
pload = { | ||
"model": model, | ||
"messages": [ | ||
{"role": "system", "content": SYSTEM_PROMPT}, | ||
{"role": "user", "content": prompt}, | ||
], | ||
"stream": False, | ||
"max_tokens": 1000, | ||
} | ||
|
||
timeout = aiohttp.ClientTimeout(total=3 * 3600) | ||
async with aiohttp.ClientSession(timeout=timeout) as session: | ||
async with session.post(api_url, headers=headers, json=pload) as response: | ||
# Request failed | ||
if response.status // 100 != 2: | ||
print('request failed') | ||
print(f"response.status {response.status}") | ||
result.prompt = prompt | ||
result.success = False | ||
return | ||
chunks = [] | ||
async for chunk, _ in response.content.iter_chunks(): | ||
chunks.append(chunk) | ||
request_end_time = time.perf_counter() | ||
output = b"".join(chunks).decode("utf-8") | ||
output = json.loads(output) | ||
|
||
result.latency = request_end_time - request_start_time | ||
result.prompt = prompt | ||
result.response = output["choices"][0]["message"]["content"] | ||
result.num_prompt_tokens = output["usage"]["prompt_tokens"] | ||
result.num_completion_tokens = output["usage"]["completion_tokens"] | ||
result.energy = output["usage"]["energy"] | ||
|
||
pbar.update(1) | ||
|
||
|
||
async def benchmark( | ||
results: Results, | ||
backend: str, | ||
model: str, | ||
api_url: str, | ||
input_requests: List[str], | ||
request_rate: float, | ||
) -> None: | ||
tasks: List[asyncio.Task] = [] | ||
pbar = tqdm(total=len(input_requests)) | ||
async for i, request in get_request(input_requests, request_rate): | ||
prompt = request | ||
task = asyncio.create_task( | ||
# Ensures results has same ordering as the input dataset | ||
send_request( | ||
results.results[i], | ||
backend, | ||
model, | ||
api_url, | ||
prompt, | ||
pbar, | ||
) | ||
) | ||
tasks.append(task) | ||
await asyncio.gather(*tasks) | ||
pbar.close() | ||
|
||
|
||
def run_benchmark( | ||
args: argparse.Namespace, api_url: str, input_requests: List[str], out_filename: str | ||
): | ||
results = Results( | ||
model=args.model, | ||
backend=args.backend, | ||
request_rate=args.request_rate, | ||
results=[Result() for _ in input_requests], | ||
) | ||
|
||
zeus_monitor = ZeusMonitor() | ||
zeus_monitor.begin_window(out_filename) | ||
benchmark_start_time = time.perf_counter() | ||
asyncio.run( | ||
benchmark( | ||
results, | ||
args.backend, | ||
args.model, | ||
api_url, | ||
input_requests, | ||
args.request_rate, | ||
) | ||
) | ||
benchmark_end_time = time.perf_counter() | ||
measurements = zeus_monitor.end_window(out_filename) | ||
zeus_total_energy = measurements.total_energy | ||
|
||
# Store aggregated results | ||
total_prompt_tokens = 0 | ||
total_completion_tokens = 0 | ||
total_latency = 0 | ||
total_latency_per_token = 0 | ||
total_latency_per_output_token = 0 | ||
server_total_energy = 0 | ||
for result in results.results: | ||
if not result.success: | ||
results.num_failures += 1 | ||
continue | ||
total_prompt_tokens += result.num_prompt_tokens | ||
total_completion_tokens += result.num_completion_tokens | ||
total_latency += result.latency | ||
total_latency_per_token += result.latency / ( | ||
result.num_prompt_tokens + result.num_completion_tokens | ||
) | ||
total_latency_per_output_token += result.latency / result.num_completion_tokens | ||
server_total_energy += result.energy | ||
|
||
num_results = len(results.results) - results.num_failures | ||
if num_results == 0: | ||
print(f"{out_filename} not generated. All requests in this run failed.") | ||
return | ||
|
||
results.total_time = benchmark_end_time - benchmark_start_time | ||
results.throughput = num_results / results.total_time | ||
results.total_prompt_tokens = total_prompt_tokens | ||
results.total_completion_tokens = total_completion_tokens | ||
results.avg_latency = total_latency / num_results | ||
results.avg_latency_per_token = total_latency_per_token / num_results | ||
results.avg_latency_per_output_token = total_latency_per_output_token / num_results | ||
results.server_total_energy = server_total_energy | ||
results.server_energy_per_request = results.server_total_energy / num_results | ||
results.server_energy_per_output_token = ( | ||
results.server_total_energy / results.total_completion_tokens | ||
) | ||
results.local_zeus_total_energy = zeus_total_energy | ||
results.local_zeus_energy_per_request = zeus_total_energy / num_results | ||
results.local_zeus_energy_per_output_token = ( | ||
zeus_total_energy / results.total_completion_tokens | ||
) | ||
|
||
with open(out_filename, "w") as f: | ||
f.write(json.dumps(asdict(results), indent=2)) | ||
|
||
if args.verbose: | ||
print("Benchmark results:") | ||
print(f"Model: {results.model}") | ||
print(f"Backend: {results.backend}") | ||
print(f"Request rate: {results.request_rate} requests/s") | ||
print() | ||
print(f"Total time: {results.total_time:.2f} s") | ||
print(f"Throughput: {results.throughput:.2f} requests/s") | ||
print(f"Average latency: {results.avg_latency:.2f} s") | ||
print(f"Average latency per token: {results.avg_latency_per_token:.2f} s") | ||
print(f"Average latency per output token: {results.avg_latency_per_output_token:.2f} s") | ||
print(f"(Zeus) Total energy: {results.local_zeus_total_energy:.2f} J") | ||
print(f"(Zeus) Energy per request: {results.local_zeus_energy_per_request:.2f} J") | ||
print(f"(Zeus) Energy per token: {results.local_zeus_energy_per_output_token:.2f} J") | ||
print(f"(Server) Total energy: {results.server_total_energy:.2f} J") | ||
print(f"(Server) Energy per request: {results.server_energy_per_request:.2f} J") | ||
print(f"(Server) Energy per token: {results.server_energy_per_output_token:.2f} J") | ||
|
||
print("Benchmark results written to", out_filename) | ||
|
||
|
||
def main(args: argparse.Namespace): | ||
if args.backend not in ["tgi", "vllm"]: | ||
raise ValueError(f"Unknown backend: {args.backend}") | ||
|
||
arg_out_filename = f"{args.out_name}-args.json" | ||
with open(arg_out_filename, "w") as f: | ||
f.write(json.dumps(vars(args), indent=2)) | ||
if args.verbose: | ||
print(args) | ||
print("Benchmark args written to", arg_out_filename) | ||
|
||
random.seed(args.seed) | ||
np.random.seed(args.seed) | ||
|
||
out_name = args.out_name | ||
api_url = f"{args.protocol}://{args.host}:{args.port}{args.endpoint}" | ||
input_requests = get_requests(args.dataset) | ||
|
||
# Note: output filenames are 1-indexed | ||
for i in range(1, args.num_runs + 1): | ||
run_benchmark(args, api_url, input_requests, out_name + f"-run{i}.json") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="Benchmark the online serving throughput." | ||
) | ||
parser.add_argument("--backend", type=str, default="vllm", choices=["vllm", "tgi"]) | ||
parser.add_argument( | ||
"--protocol", type=str, default="http", choices=["http", "https"] | ||
) | ||
parser.add_argument("--host", type=str, default="localhost") | ||
parser.add_argument("--port", type=int, default=8000) | ||
parser.add_argument("--endpoint", type=str, default="/v1/chat/completions") | ||
parser.add_argument("--model", type=str, default=None) | ||
parser.add_argument( | ||
"--dataset", type=str, required=True, help="Path to the dataset." | ||
) | ||
parser.add_argument( | ||
"--num-runs", | ||
type=int, | ||
default=3, | ||
help="Runs the benchmark num-runs times, writing results to 3 separate files.", | ||
) | ||
parser.add_argument( | ||
"--request-rate", | ||
type=float, | ||
default=float("inf"), | ||
help="Number of requests per second. If this is inf, " | ||
"then all the requests are sent at time 0. " | ||
"Otherwise, we use Poisson process to synthesize " | ||
"the request arrival times.", | ||
) | ||
parser.add_argument( | ||
"--out-name", | ||
type=str, | ||
default="benchmark_result", | ||
help="Name of file to write benchmark results. Note: '-run{i}.json' will be appended for actual outputted files.", | ||
) | ||
parser.add_argument( | ||
"--verbose", | ||
type=bool, | ||
default=True, | ||
help="Set to true to print out benchmark results. Otherwise, only write to file.", | ||
) | ||
parser.add_argument("--seed", type=int, default=0) | ||
args = parser.parse_args() | ||
main(args) |
Oops, something went wrong.