Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding module for embeddings dataprocessing #29

Draft
wants to merge 1 commit into
base: staging
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions dataprep_ml/embeddings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
from functools import lru_cache
from typing import List, Union

import pandas as pd
import torch
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if we don't want to intro torch, we can remove it

from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter

from dataprep_ml.helpers import log

class DfLoader(DataFrameLoader):

"""
override the load method of langchain.document_loaders.DataFrameLoaders to ignore rows with 'None' values
"""

def __init__(self, data_frame: pd.DataFrame, page_content_column: str):
super().__init__(data_frame=data_frame, page_content_column=page_content_column)
self._data_frame = data_frame
self._page_content_column = page_content_column

def load(self) -> List[Document]:
"""Loads the dataframe as a list of documents"""
documents = []
for n_row, frame in self._data_frame[self._page_content_column].iteritems():
if pd.notnull(frame):
# ignore rows with None values
column_name = self._page_content_column

document_contents = frame

documents.append(
Document(
page_content=document_contents,
metadata={
"source": "dataframe",
"row": n_row,
"column": column_name,
},
)
)
return documents


def df_to_documents(
df: pd.DataFrame, page_content_columns: Union[List[str], str]
) -> List[Document]:
"""Converts a given dataframe to a list of documents"""
documents = []

if isinstance(page_content_columns, str):
page_content_columns = [page_content_columns]

for _, page_content_column in enumerate(page_content_columns):
if page_content_column not in df.columns.tolist():
raise ValueError(
f"page_content_column {page_content_column} not in dataframe columns"
)

loader = DfLoader(data_frame=df, page_content_column=page_content_column)
documents.extend(loader.load())

return documents


def split_documents(df, columns):
# Load documents and split in chunks
log.info(f"Loading documents from input data")

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
documents = df_to_documents(df=df, page_content_columns=columns)
texts = text_splitter.split_documents(documents)
log.info(f"Loaded {len(documents)} documents from input data")
log.info(f"Split into {len(texts)} chunks of text (max. 500 tokens each)")

return texts


@lru_cache()
def load_embeddings_model(embeddings_model_name):
try:
model_kwargs = {"device": "gpu" if torch.cuda.is_available() else "cpu"}
embedding_model = HuggingFaceEmbeddings(
model_name=embeddings_model_name, model_kwargs=model_kwargs
)
except ValueError:
raise ValueError(
f"The {embeddings_model_name} is not supported, please select a valid option from Hugging Face Hub!"
)
return embedding_model
Loading