Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Stage3: Use new torch grad accumulation hooks API #6773

Merged
merged 14 commits into from
Jan 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion deepspeed/runtime/compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
# DeepSpeed Team

import torch
from deepspeed.utils.torch import required_torch_version

try:
from torch.compiler import is_compiling as torch_is_compiling
Expand All @@ -16,7 +17,7 @@


def is_compile_supported():
return hasattr(torch, "compiler") and hasattr(torch.nn.Module, "compile")
return required_torch_version(min_version=2.1)


def disable(func):
Expand Down
7 changes: 2 additions & 5 deletions deepspeed/runtime/zero/stage3.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from deepspeed.runtime.base_optimizer import ZeROOptimizer
from deepspeed.utils import logger
from deepspeed.utils.torch import register_grad_hook
from deepspeed.runtime.fp16.loss_scaler import CreateLossScaler
from deepspeed.runtime.comm.coalesced_collectives import reduce_scatter_coalesced, all_to_all_quant_reduce, all_to_all_loco_quant_reduce
from deepspeed.runtime.utils import inf, is_model_parallel_parameter, get_only_unique_item
Expand Down Expand Up @@ -1159,7 +1160,6 @@ def overlapping_partition_gradients_reduce_epilogue(self):

def create_reduce_and_remove_grad_hooks(self):
print_rank_0(f'[Begin] Create gradient reduction hooks')
self.grad_accs = []
self.leaf_parameters = defaultdict(list)
for i, param_group in enumerate(self.fp16_groups):
for param in param_group:
Expand All @@ -1172,15 +1172,12 @@ def create_reduce_and_remove_grad_hooks(self):

#print(f"After all gather {param.device}, {param.shape}")
def wrapper(param):
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]

@instrument_w_nvtx
def reduce_partition_and_remove_grads(*notneeded):
self.reduce_ready_partitions_and_remove_grads(param)

self._grad_acc_hooks.append(grad_acc.register_hook(reduce_partition_and_remove_grads))
self.grad_accs.append(grad_acc)
self._grad_acc_hooks.append(register_grad_hook(param, reduce_partition_and_remove_grads))

#print(f"param grad fn {param.expand_as(param).grad_fn}")
if z3_leaf_parameter(param):
Expand Down
9 changes: 9 additions & 0 deletions deepspeed/utils/torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,12 @@ def required_torch_version(min_version=None, max_version=None):
return False

return True


def register_grad_hook(param, hook):
if required_torch_version(min_version=2.1):
return param.register_post_accumulate_grad_hook(hook)
else:
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]
return grad_acc.register_hook(hook)