Skip to content

miaozhaoji/HI-Diff-MPI

 
 

Repository files navigation

Contents

  1. Installation
  2. Datasets
  3. Models
  4. Training
  5. Testing
  6. Results
  7. Citation
  8. Acknowledgements

Installation

  • Python 3.9
  • PyTorch 1.9.0
  • NVIDIA GPU + CUDA
cd HI-Diff
conda create -n hi_diff python=3.9
conda activate hi_diff
pip install -r requirements.txt

Installation

按照train_test_val_split.py划分数据集,确保同一仿体不会同时出现在训练集和测试集中,避免数据泄露

Training

Stage-1 (S1)

python train.py -opt options/train/Simu_S1.yml
Stage-2 (S2)

python train.py -opt options/train/Simu_S2.yml
  • 训练结果在 in experiments/.

Testing

  • 测试的配置在 options/test/RealData.yml中,根据第84行指定的目录配置放置训练好的模型.

    python test.py -opt options/test/RealData.yml
  • The output is in results/.

Results

To do

Citation

If you find the code helpful in your resarch or work, please cite the following paper(s).

@inproceedings{chen2023hierarchical,
  title={Hierarchical Integration Diffusion Model for Realistic Image Deblurring}, 
  author={Chen, Zheng and Zhang, Yulun and Ding, Liu and Bin, Xia and Gu, Jinjin and Kong, Linghe and Yuan, Xin},
  booktitle={NeurIPS},
  year={2023}
}

Acknowledgements

This code is built on BasicSR, Restormer, and DiffIR.

About

hi-diff for mpi

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • MATLAB 0.5%